Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AMCK:
I là trung điểm của AC (gt).
I là trung điểm của MK (K là điểm đối xứng với M qua I).
Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)
=> Tứ giác AMCK là hình chữ nhật (dhnb).
b) Xét tam giác ABC cân tại A: AM là đường cao (gt).
=> AM là trung tuyến (Tính chất tam giác cân).
=> M là trung điểm của BC.
=> BM = MC.
Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).
BM = MC (cmt).
=> AK = MC = BM.
Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).
=> AK // BM.
Xét tứ giác AKMB:
AK // BM (cmt).
AK /= BM (cmt).
=> Tứ giác AKMB là hình bình hành (dhnb).
c) Tứ giác AMCK là hình vuông (gt).
=> AK = AM (Tính chất hình vuông).
Mà AK = BM (cmt).
=> AM = BM = AK.
Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).
=> AM = BM = AK = \(\dfrac{1}{2}\) BC.
Xét tam giác ABC cân tại A:
AM = \(\dfrac{1}{2}\) BC (cmt).
=> Tam giác ABC vuông cân tại A.
Thi đề phòng sớm sớm zậy :))) Thi xong gửi đề cho tui nhe
Hình tự kẻ :
a.
Xét Tam giác CMI và tam giác AKI có:
AI=CI ( I là trung điểm của AC )
góc CIM = góc AIK ( đối đỉnh )
MI = IK ( K đối xứng M qua I )
=> Tam giác CMI = tam giác AKI ( cgc)
=> Góc CMI = Góc IKA ( 2 góc tương ứng )
=> Góc CMK = góc AKM ( slt )
=> AK // MC => AK // BC
b)
Tam giác ABC có:
M là trung điểm của BC (gt)
I là trung điểm của AC (gt)
=> MI là đường trung bình của tam giác ABC
=>\(MI=\dfrac{1}{2}AB\); MI // AB ( tính chất đường trung bình )
Ta có :
K đối xứng với M qua I (gt)
=> I là trung điểm của KM => \(MI=IK=\dfrac{1}{2}MK\)
Ta lại có :
\(MI=IK=\dfrac{1}{2}MK\left(cmt\right)\Rightarrow MK=2MI\left(1\right)\)
\(MI=\dfrac{1}{2}AB\left(cmt\right)\Rightarrow AB=2MI\left(2\right)\)
Từ 1 và 2 ⇒ AB = MK
Tứ giác ABMK có:
AB = MK (cmt)
MK // AB ( MI // AB )
=> tứ giác ABMK Là hình bình hành
c)
Giả sử tứ giác AMCK là Hình Vuông => AM = MC = CK = AK ( tính chất hình vuông )
Tam giác ABC cân có:
AM là đường trung tuyến ( M là trung điểm của BC )
Mà : AM = MC ( cmt )
\(\Rightarrow AM=MC=\dfrac{1}{2}BC\)
\(\Rightarrow\Delta ABC\) vuông cân tại A
Vậy .....
Lời giải:
a. $M,N$ đối xứng nhau qua $O$ nghĩa là $O$ là trung điểm $MN$
Tứ giác $AMBN$ có 2 đường chéo $AB, MN$ cắt nhau tại trung điểm $O$ của mỗi đường nên $AMBN$ là hbh $(1)$
Mặt khác, tam giác $ABC$ cân tại $A$ nên trung tuyến $AM$ đồng thời là đường cao
$\Rightarrow AM\perp BC$ nên $\widehat{AMB}=90^0(2)$
Từ $(1); (2)\Rightarrow AMBN$ là hình chữ nhật
b. Vì $AMBN$ là hcn nên $BM\parallel AN$ và $BM=AN$
Mà $B,M,C$ thẳng hàng và $BM=MC$ nên:
$AN\parallel CM, AN=CM$
$\Rightarrow ACMN$ là hình bình hành
c.
$ACMN$ là hbh nên $MN\parallel AC$
Để $ACMN$ là hình vuông thì $MN\perp AB$
$\Leftrightarrow AC\perp AB$
$\Leftrightarrow ABC$ là tam giác vuông tại $A$
Bài 3:
a: Xét tứ giác AMBH có
I là trung điểm chung của AB và MH
MA=MB
Do đó; AMBH là hình thoi
b: Xét ΔBAC có BI/BA=BM/BC
nên IM//AC
=>MH//AC
=>IH//AC
c: Để AHBM là hình vuông thì góc AMB=90 độ
=>ΔABC cân tại A
=>AB=AC
c. Hình chữ nhật ADBH là hình vuông \(\Leftrightarrow\) AB vuông góc HD
Mà AC // HD (do ADHC là hình bình hành)
\(\Leftrightarrow\) AB vuông góc với AC
\(\Leftrightarrow\) góc BAC = 90 độ
\(\Leftrightarrow\) tam giác ABC vuông tại A
Vậy, khi tam giác ABC vuông cân tại A thì tứ giác ADBH là hình vuông .
a: \(S_{ABC}=\dfrac{12\cdot10}{2}=60\left(cm^2\right)\)
b: Xét tứ giác AHBE có
M là trung điểm chung của AB và HE
góc AHB=90 độ
Do đó: AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
Do đo: ABFC là hình thoi
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đó: AMCKlà hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
Cm:Xét tứ tứ giác AEBH có: EM = MH (gt); AM = MB (gt)
\(\widehat{AHB}=90^0\)
=> tứ giác AEBH là hình chữ nhật
=> AE // BH hay AE // BC
b) Xét t/giác ABC cân tại A có AH là đường cao
=> AH cũng là đường trung tuyến
=> BH = HC
Ta có: AEBH là hình chữ nhật => AE = BH
mà BH = HC (cmt)
=> AE = HC
Xét tứ giác ACHE có AE // HC (cmt)
AE = HC (cmt)
=> ACHE là hình bình hành
c) Để hình chữ nhật AHBE là hình vuông
<=> AH = HB
<=> t/giác AHB là t/giác vuông cân
<=> \(\widehat{BAH}=45^0\)
<=> \(\widehat{A}=90^0\) (Do t/giác ABC cân có AH là đường cao => AH là đường trung tuyến)
<=> t/giác ABC vuông cân
Vậy ...