K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

A B C H K I E

Xét ΔABC cân tại A(gt).Mà AH là đường cao(gt)

=>AH cx là đường phân giác

=>^IAE=^KAE

Xét ΔIAE và ΔKAE có:

   AI=AK(gt)

  ^IAE=^KAE(cmt)

  AE:cạnh chung

=>ΔIAE=ΔKAE(c.g.c)

=>IE=KE                                  (1)

Xét ΔAIK có AI=AK(gt)

=> ΔAIK cân tại A

Mà AE là đường pg

=>AE cx là đường cao

=> IK\(\perp\)AH                              (2)

Từ (1) và (2) suy ra:

I đối xứng với K qua AH

2 tháng 10 2016

mink quên bạn gọi IK cắt AH tại E giúp mink

16 tháng 9 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: △ ABC cân tại A; AH ⊥ BC (gt)

Suy ra: AH là tia phân giác của góc A

Lại có: AI = AK (gt)

Suy ra: ∆ AIK cân tại A

Do AH là tia phân giác của góc A

Nên AH là đường trung trực của IK

Vậy I đối xứng với K qua AH.

28 tháng 8 2017

nè bạn :))

28 tháng 8 2017

gửi lộn bài :v :)

28 tháng 4 2017

A B C I K H

Ta có: \(\Delta ABC\) cân , AH là đường cao nên AH cũng là phân giác góc A

\(\Delta AIK\) cân , AH là tia phân giác nên AH cũng là trung trực của IK

Vậy I đối xứng với K qua AH

28 tháng 4 2017

Vì tam giác ABC cân tại A, AH là đường cao nên AH là tia phân giác của góc A.

Do tam giác AIK cân tại A, AH là tia phân giác của góc A nên AH là đường trung trực của IK.

Vậy I đối xứng với K qua AH

29 tháng 9 2015

A B C H I K

a) Ta có AI = AK ; AB = AC => AI / AB = AK/ AC => IK // BC (Định lí Ta lét)

Tam giác ABC cân tại A có AH là đường cao => AH I BC  

=> AH I IK

Mặt khác, tam giác AIK cân tại A : AH là đường cao nên đồng thời là đường trung trực 

=> I và K đối xứng qua AH

5 tháng 9 2020

Tự vẽ hình:))

\(\Delta ABC\)cân tại A

AH là đường cao đồng thời là p/g \(\widehat{A}\)

Vì \(\Delta AIK\)cân tại A

AH là p/g \(\widehat{A}\)đồng thời là đường trung trực của \(IK\)

Vậy I đx K qua AH

17 tháng 7 2021

A B C I K H O

Gọi giao điểm của IK và AH là O.

Vì ΔABC cân tại A và AH là đường cao
=> AH đồng thời cũng là tia phân giác của ΔABC
hay AO là tia phân giác của \(\widehat{IAK}\)
=> \(\widehat{IAO}=\widehat{OAK}\)

Xét ΔAIO và ΔAKO có: \(\left\{{}\begin{matrix}AI=AK\left(gt\right)\\\widehat{IAO}=\widehat{KAO}\\AO chung\end{matrix}\right.\)
=> ΔAIO = ΔAKO(c.g.c)
=>IO=KO(2 cạnh tương ứng)

Xét ΔAIK cân tại A (AI=AK) có AO là đường trung tuyến 
=> AO là đương trung trực của \(\Delta\) AIK
=> I đối xứng với K qua AH

=>đpcm

 

Ta có: AI+IB=AB(I nằm giữa A và B)

AK+KC=AC(K nằm giữa A và C)

mà AI=AK(gt)

và AB=AC(ΔABC cân tại A)

nên IB=KC

Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(Hai cạnh tương ứng)

Xét ΔIBH và ΔKCH có 

IB=KC(cmt)

\(\widehat{B}=\widehat{C}\)(ΔBAC cân tại A)

BH=CH(cmt)

Do đó: ΔIBH=ΔKCH(c-g-c)

Suy ra: HI=HK(Hai cạnh tương ứng)

Ta có: AI=AK(gt)

nên A nằm trên đường trung trực của IK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: HI=HK(cmt)

nên H nằm trên đường trung trực của IK(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AH là đường trung trực của IK

hay I đối xứng với K qua AH(đpcm)

20 tháng 1 2018

Bài tập: Đối xứng trục | Lý thuyết và Bài tập Toán 8 có đáp án

Vì Δ ABC cân tại A có AH là đường cao theo giả thiết nên AH cũng là đường phân giác của góc A.

Theo giả thiết ta có AD = AE nên Δ ADE cân tại A nên AH là đường trung trực của DE

⇒ D đối xứng với E qua AH.

b: Xét ΔABC có 

\(\dfrac{AI}{AB}=\dfrac{AK}{AC}\)

Do đó: IK//BC

Xét tứ giác BIKC có IK//BC

nên BIKC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BIKC là hình thang cân