Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; Xét ΔABC có
H là trung điểm của BC
HK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
AH là đường trung tuyến
BK là đường trung tuyến
AH cắt BK tại G
Do đó: G là trọng tâm của ΔABC
b: Xét ΔABC có
G là trọng tâm
CI là đường trung tuyến
Do đó: C,I,G thẳng hàng
c: Xét tứ giác AIHK có
HK//AI
HK=AI
Do đó: AIHK là hình bình hành
mà AI=AK
nên AIHK là hình thoi
=>KI là đường trung trực của AH
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔMAD và ΔMBH có
góc MAD=góc MBH
MA=MB
góc AMD=góc BMH
=>ΔMAD=ΔMBH
=>AD=BH
mà AD//BH
nên ADBH là hình bình hành
=>BD=AH
Cm: a) Xét t/giác ABH và t/giác ACH
có AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
AH : chung
=> t/giác ABH = t/giác ACH (ch - cgn)
=> góc BAH = góc HAC (hai góc tương ứng) (Đpcm)
=> BH = CH (hai cạnh tương ứng)
=> H là trung điểm của BC
b) Xét t/giác AMH và t/giác ANH
có góc AMH = góc ANH = 900 (gt)
AH : chung
góc MAH = góc NAH (Cmt)
=> t/giác AMH = t/giác ANH (ch - gn)
=> AM = AN (hai cạnh tương ứng)
=> T/giác AMN là t/giác cân tại A
c) Gọi I là giao điểm của BC và MP
Ta có: T/giác AMH = t/giác ANH (Cmt)
=> MH = HN (hai cạnh tương ứng)
Mà HN = PH (gt)
=> MH = PH
Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)
góc AHN + góc NHC = 900 (phụ nhau)
Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)
=> góc MHB = góc NHC
Mà góc NHC = góc BHP
=> góc MHB = góc BHP
Xét t/giác MHI và t/giác PHI
có MH = PH (cmt)
góc MHI = góc IHP (cmt)
HI : chung
=> t/giác MHI = t/giác PHI (c.g.c)
=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)
=> góc MIH = góc HIP (hai góc tương ứng)
Mà góc MIH + góc HIP = 1800
=> 2.góc MIH = 1800
=> góc MIH = 1800 : 2
=> góc MIH = 900
=> HI \(\perp\)MP (2)
Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP
hay BC là đường trung trực của đoạc thẳng MP (Đpcm)
d) tự lm
Cm: a) Xét t/giác ABH và t/giác ACH
có AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
AH : chung
=> t/giác ABH = t/giác ACH (ch - cgn)
=> góc BAH = góc HAC (hai góc tương ứng) (Đpcm)
=> BH = CH (hai cạnh tương ứng)
=> H là trung điểm của BC
b) Xét t/giác AMH và t/giác ANH
có góc AMH = góc ANH = 900 (gt)
AH : chung
góc MAH = góc NAH (Cmt)
=> t/giác AMH = t/giác ANH (ch - gn)
=> AM = AN (hai cạnh tương ứng)
=> T/giác AMN là t/giác cân tại A
c) Gọi I là giao điểm của BC và MP
Ta có: T/giác AMH = t/giác ANH (Cmt)
=> MH = HN (hai cạnh tương ứng)
Mà HN = PH (gt)
=> MH = PH
Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)
góc AHN + góc NHC = 900 (phụ nhau)
Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)
=> góc MHB = góc NHC
Mà góc NHC = góc BHP
=> góc MHB = góc BHP
Xét t/giác MHI và t/giác PHI
có MH = PH (cmt)
góc MHI = góc IHP (cmt)
HI : chung
=> t/giác MHI = t/giác PHI (c.g.c)
=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)
=> góc MIH = góc HIP (hai góc tương ứng)
Mà góc MIH + góc HIP = 1800
=> 2.góc MIH = 1800
=> góc MIH = 1800 : 2
=> góc MIH = 900
=> HI ⊥MP (2)
Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP
hay BC là đường trung trực của đoạc thẳng MP (Đpcm)
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
=>AH là đường trung tuyến của ΔABC
b: Sửa đề: N là trung điểm của AC
Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC
c: Xét ΔABC có
BN,AH là các đường trung tuyến
BN cắt AH tại K
Do đó: K là trọng tâm của ΔABC
Xét ΔABC có
K là trọng tâm
M là trung điểm của AB
Do đó: C,K,M thẳng hàng
ta có tam giác ABC cân tại A ( gt )
AH là đường cao đi từ đỉnh A của tam giác ABC(GT)
=>Ah là trung tuyến của tam giác ABC
(làm vậy đko)