Cho tam giác ABC cân tại A đường cao AD gọi I là trung điểm của AD là đối xứng với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có

BH chung

HA=HK

Do đó: ΔBHA=ΔBHK

=>BA=BK

=>\(\hat{BAK}=\hat{BKA}\)

b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)

\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)

\(\hat{BAK}=\hat{BKA}\)

nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)

Xét ΔBAD và ΔBKI có

\(\hat{BAD}=\hat{BKI}\)

BA=BK

\(\hat{ABD}\) chung

Do đó: ΔBAD=ΔBKI

=>BD=BI; AD=KI

Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)

nên IK//AK

=>AKDI là hình thang

Hình thang AKDI có AD=KI

nên AKDI là hình thang cân

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

a) Ta có AM=CN và AB=CD (vì ABCD là hình bình hành), nên ta có thể kết luận rằng AMCN là hình bình hành.

b) Ta cần chứng minh DMBN là hình bình hành.

Vì ABCD là hình bình hành, nên ta có AB || CD và AD || BC.

Do đó, ta có góc DAB = góc DCB và góc BAD = góc BCD.

Vì AM=CN, nên ta có góc MAB = góc NCD.

Từ đó, ta có góc DMB = góc DAB + góc MAB = góc DCB + góc NCD = góc NCB.

Vì AB || CD, nên góc DMB = góc NCB.

Vì AD || BC, nên góc DMB = góc BDN.

Từ đó, ta có góc DMB = góc NCB = góc BDN.

Vậy DMBN là hình bình hành.

Bạn tích cho mik nha!

Nhớ tick cho mik nha!

Để chứng minh tứ giác AMCN là hình bình hành, ta cần chứng minh rằng AM = CN và hai đường thẳng AM và CN là song song.

Vì am < cn, ta có thể kết luận rằng M nằm giữa A và B, và N nằm giữa C và D.

Gọi P là giao điểm của hai đường thẳng AM và CN.

Ta có:
AP = AM - MP
CP = CN - NP

Vì AM = CN và am < cn, nên AM - MP < CN - NP.

Do đó, AP < CP.

Từ đó, ta có thể kết luận rằng hai đường thẳng AM và CN là song song.

Vì AM = CN và hai đường thẳng AM và CN là song song, nên tứ giác AMCN là hình bình hành.

Để chứng minh tứ giác BMDN là hình bình hành, ta cần chứng minh rằng BM = DN và hai đường thẳng BM và DN là song song.

Vì AM = CN và AM < CN, nên M nằm giữa A và B, và N nằm giữa C và D.

Gọi Q là giao điểm của hai đường thẳng BM và DN.

Ta có:
BQ = BM - MQ
DQ = DN - NQ

Vì BM = DN và BM < DN, nên BM - MQ < DN - NQ.

Do đó, BQ < DQ.

Từ đó, ta có thể kết luận rằng hai đường thẳng BM và DN là song song.

Vì BM = DN và hai đường thẳng BM và DN là song song, nên tứ giác BMDN là hình bình hành.

21 giờ trước (10:58)

🎀🔱🎵☆MiN Tổng☆🎵🔱🎀 bạn làm như mình oan lắm ý, các bạn khác ghét bạn rồi đấy, giờ còn có cả đống ng ns xấu bn, bn sửa lại cái tính đi ngta còn ưa

a: Xét ΔMAD và ΔMBE có

\(\hat{AMD}=\hat{BME}\) (hai góc đối đỉnh)

MA=MB

\(\hat{MAD}=\hat{MBE}\) (hai góc so le trong, AD//BE)

Do đó: ΔMAD=ΔMBE

=>AD=BE

Xét tứ giác ADBE có

AD//BE

AD=BE

Do đó: ADBE là hình bình hành

b: Ta có: AD=BE

AD=BC

Do đó: BE=BC

=>B là trung điểm của CE

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN

a: Xét tứ giác ADCH có

M là trung điểm của AC

M là trung điểm của HD

Do đó: ADCH là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

HE//AD

HE=AD
Do đó:ADHE là hình bình hành