K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

b: Xét tứ giác ABMK có 

AK//BM

AK=BM

Do đó: ABMK là hình bình hành

11 tháng 12 2022

:))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))chịu thôi khó mãi thôi chỉ cho câu D là được rồi 

 

 

29 tháng 12 2022

Thi đề phòng sớm sớm zậy :))) Thi xong gửi đề cho tui nhe 

Hình tự kẻ :

a.

Xét Tam giác CMI và tam giác AKI có:

AI=CI ( I là trung điểm của AC )

góc CIM = góc AIK ( đối đỉnh )

MI = IK ( K đối xứng M qua I )

=> Tam giác CMI = tam giác AKI ( cgc)

=> Góc CMI = Góc IKA ( 2 góc tương ứng )

=> Góc CMK = góc AKM ( slt ) 

=> AK // MC => AK //  BC

b) 

Tam giác ABC có:

M là trung điểm của BC (gt)

I là trung điểm của AC (gt)

=> MI là đường trung bình của tam giác ABC 

=>\(MI=\dfrac{1}{2}AB\); MI // AB ( tính chất đường trung bình )

Ta có :

K đối xứng với M qua I (gt)

=> I là trung điểm của KM => \(MI=IK=\dfrac{1}{2}MK\)

Ta lại có :

\(MI=IK=\dfrac{1}{2}MK\left(cmt\right)\Rightarrow MK=2MI\left(1\right)\)

\(MI=\dfrac{1}{2}AB\left(cmt\right)\Rightarrow AB=2MI\left(2\right)\)

Từ 1 và 2 ⇒ AB = MK 

Tứ giác ABMK có:

AB = MK (cmt)

MK // AB ( MI // AB )

=> tứ giác ABMK Là hình bình hành 

c)

Giả sử tứ giác AMCK là Hình Vuông => AM = MC = CK = AK ( tính chất hình vuông )

Tam giác ABC cân có:

AM là đường trung tuyến ( M là trung điểm của BC )

Mà : AM = MC ( cmt )

\(\Rightarrow AM=MC=\dfrac{1}{2}BC\)

\(\Rightarrow\Delta ABC\) vuông cân tại A

Vậy .....

 

26 tháng 12 2022

đang cần mong mn giúp 

26 tháng 12 2022

Hình tự vẽ ạ 

a)

Ta có:

Tam giác ABC cân tại A (gt)

Đường trung tuyến AM (gt) 

=> AM vừa là đường cao vừa là đường trung tuyến vừa là đường phân giác trong tam giác ABC ( tính chất đường trung tuyến trong tam giác cân )

MA là đường cao(cmt)=> AM vuông góc BC

Tứ giác AMCK có:

I là trung điểm của AC (gt)

I là trung điểm của MK ( K đối xứng M qua I )

=> I là trung điểm của 2 đường chéo AC và MK

=> Tứ giác AMCK là Hình bình hành

Hình bình hành AMCK có:

Góc AMC vuông (AM vuông góc BC )

=> Hình bình hành AMCK là hình chữ nhật 

b)

Vì : Hình bình hành AMCK là hình chữ nhật ⇒ AK // MC ( tính chất hình chữ nhật )

Δ ABC có:

M là trung điểm của BC ( AM là đường trung tuyến )

I là trung điểm của AC (gt)

⇒IM Là đường trung bình của ΔABC

⇒IM // AB (tính chất đường trung bình )

Tứ giác AKMB có:

MK // AB ( IM // AB )

AK // BM ( AK // MC )

⇒ Tứ giác AKMB là Hình Bình Hành

c) 

Theo đề ra ta có:

AM là đường trung tuyến

⇒ M là trung điểm của BC

⇒ \(BM=CM=\dfrac{1}{2}BC\)

Mà : BC = 8 cm 

⇒ \(BM=CM=\dfrac{1}{2}BC=\dfrac{1}{2}8=4cm\)

Áp dụng định lí Pi ta go vào \(\Delta ACM\) ta có:

\(AC^2=AM^2+CM^2\)

\(\Rightarrow AM^2=AC^2-CM^2=5^2-4^2=9\)

\(\Rightarrow AM=3cm\)

Diện tích tứ giác AMCK là :

\(S_{AMCK}=AM.CM\)

\(\Rightarrow S_{AMCK}=3.4=12cm^2\)

Vậy diện tích tứ giác AMCK là 12 cm vuông

c)

Giả sử tam giác ABC vuông cân 

=> Góc A = 90 độ; AB = AC ( tính chất tam giác vuông cân )

AM là đường trung tuyến (gt)

=> AM là đường trung tuyến và là đường phân giác trong tam giác ABC

Tam giác ABC có:

AM Là đường trung tuyến ứng với cạnh huyền BC 

=> AM = 1/2BC ( tính chất đường trung tuyến ứng với cạnh huyền ) (1)

Mà :

M là trung điểm của BC => BM = CM =1/2BC (2)

từ 1 và 2 => AM = CM = 1/2 BC

Tứ giác AMCK có:

I là trung điểm của AC (gt)

I là trung điểm của MK ( K đối xứng M qua I )

AM = CM (cmt)

=> Tứ giác AMCK là Hình Vuông

Vậy để tứ giác AMCK là hình vuông thì điều kiện cần có của tam giác ABC là tam giác ABC vuông cân 

 

 

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

=>AMCK là hình chữ nhật

b: Xet tứ giác ABMK có

AK//MB

AK=MB

=>ABMK là hình bình hành

c; Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

AB=AC

=>ABEC là hình thoi