K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2022

 Xét ΔAEF và ΔDFE có

góc AEF=góc DFE

EF chung

góc AFE=góc DEF

Do đó: ΔAEF=ΔDFE

Xét ΔEDC có góc EDC=góc ECD

nên ΔEDC cân tại E

=>ED=CE=3-AE

Xét ΔFBD có góc FDB=góc FBD

nên ΔFBD cân tại F

=>FD=FB=3-AF=3-DE=3-EC

ED+FD=3-AE+3-DE=3-AE+3-EC=6-3=3cm

31 tháng 12 2022

Xét ΔAEF và ΔDFE có

góc AEF=góc DFE

EF chung

góc AFE=góc DEF

Do đó: ΔAEF=ΔDFE

Xét ΔEDC có góc EDC=góc ECD

nên ΔEDC cân tại E

=>ED=CE=3-AE

Xét ΔFBD có góc FDB=góc FBD

nên ΔFBD cân tại F

=>FD=FB=3-AF=3-DE=3-EC

ED+FD=3-AE+3-DE=3-AE+3-EC=6-3=3cm

31 tháng 12 2022

Xét ΔAEF và ΔDFE có

góc AEF=góc DFE

EF chung

góc AFE=góc DEF

Do đó: ΔAEF=ΔDFE

Xét ΔEDC có góc EDC=góc ECD

nên ΔEDC cân tại E

=>ED=CE=3-AE

Xét ΔFBD có góc FDB=góc FBD

nên ΔFBD cân tại F

=>FD=FB=3-AF=3-DE=3-EC

ED+FD=3-AE+3-DE=3-AE+3-EC=6-3=3cm

1 tháng 11 2021

nguồn:https://olm.vn/hoi-dap/detail/327640299239.html

undefinedundefined

10 tháng 6 2017

undefined(hình 138).DE//AF, DF//AE nên DE=AF (1) (giải thích như bài 52)

DF//AC\(\Rightarrow\) \(\widehat{D1}=\widehat{C}\) (đồng vị)

\(\Delta ABC\) cân tại A\(\Rightarrow\)\(\widehat{B}=\widehat{C}\)

Suy ra :\(​\widehat{D1}=​\widehat{B}\)

\(\Delta FBD\)\(​\widehat{D1}=​\widehat{B}\) suy ra \(\Delta FBD\) cân tại F \(\Rightarrow\)FB=FD (2)

Từ (1) và (2)\(\Rightarrow\)DE+DF=AF+FB=AB=3cm

18 tháng 1 2022
1 tháng 6 2017

Ta có hình vẽ

Tam giác cân

Ta có:

FD//EC và BF//ED

=> +) \(\widehat{FDB}=\widehat{ECD}\) (hai góc đồng vị ) (1)

+) \(\widehat{FBD}=\widehat{EDC}\) (hai góc đồng vị ) (2)

+)\(\widehat{DFB}=\widehat{FDE}\) (hai góc đồng vị )

+)\(\widehat{FDE}=\widehat{DFE}\) (hai góc đồng vị )

+)\(\widehat{EBF}=\widehat{DEC}\) (hai góc đồng vị )

+)\(\widehat{EDC}=\widehat{DEF}\) (hai góc đồng vị )

Ta lại có :

\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\) ( hai góc ở đáy của tam giác cân ) (3)

Từ (1);(2) và (3) ta suy ra:

+)\(\Delta FBD\) là tam giác cân tại F ( vì tam giác có 2 góc bằng nhau )

+)\(\Delta EDC\) là tam giác cân tại E ( vì tam giác có 2 góc bằng nhau )

=> +) FB=FD (4)

+) ED=EC (5)

Ta lại có:

*)\(\Delta FBD=\Delta DEF\) (g.c.g)

=> +) FB=ED ( hai cạnh tuơng ứng ) (6)

+) BD=FE ( hai cạnh tuơng ứng ) (7)

*)\(\Delta DFE=\Delta ECD\) (g.c.g)

=> +) FD=EC ( hai cạnh tuơng ứng ) (8)

+) FE=DC ( hai cạnh tuơng ứng ) (9)

Từ(4);(5);(6) và (8) suy ra:

FB=FD=DE=EC (10)

Ta lại có:

\(\Delta FBD=\Delta AFE\) (g.c.g)

=> AF=BF ( hai cạnh tương ứng ) (11)

=> \(AF=\dfrac{1}{2}AB=\dfrac{1}{2}.3=\dfrac{3}{2}=1,5\) (12)

Từ (10) và (11) suy ra:

AF=FD=ED (13)

Từ (12) và (13) suy ra:

FD=ED=1,5 (cm)

=> FD+ED=3 (cm)

Vậy DE+DF=3 (cm)

1 tháng 6 2017

hình bị lỗi xíu :)Tam giác cân

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0
5 tháng 3 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: DF // AC(gt)

=> ∠D1 = ∠C (hai góc đồng vị) (1)

Lại có: ΔABC cân tại A

=> ∠B = ∠C (tính chất tam giác cân) (2)

Từ (1) và (2) suy ra: ∠B = ∠D1

Hay ΔBFD cân tại F =>BF = DF (3)

Nối AD. Xét ΔAFD và ΔDEA có:

∠ADF =∠EAD(so le trong vì DF // AC)

AD cạnh chung

∠DAF =∠ADE (so le trong vì DE // AB)

Suy ra: ΔAFD= ΔDEA(g.c.g)

Nên AF = DE (hai cạnh tương ứng) (4)

Từ(3) và (4) suy ra: DE + DF = AF + BF = AB = 3cm

31 tháng 12 2022

Xét ΔAEF và ΔDFE có

góc AEF=góc DFE

EF chung

góc AFE=góc DEF

Do đó: ΔAEF=ΔDFE

Xét ΔEDC có góc EDC=góc ECD

nên ΔEDC cân tại E

=>ED=CE=3-AE

Xét ΔFBD có góc FDB=góc FBD

nên ΔFBD cân tại F

=>FD=FB=3-AF=3-DE=3-EC

ED+FD=3-AE+3-DE=3-AE+3-EC=6-3=3cm