Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a: Xét ΔABC có
BD là đường phân giác
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{AC}{BC}\left(1\right)\)
Xét ΔACB có
CE là đường phân giác
nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
hay ED//BC
Xét tứ giác BEDC có ED//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Ta có : tam giác ABC cân tại A
BD là phân giác của góc ABC
CE là phân giác của góc ACB
=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)
Xét tam giác ABD và tam giác ACE :
BD=CE (cmt)
góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)
AB=BC (tam giác ABC cân tại A)
Suy ra: tam giác ABD= tam giác ACE (c-g-c)
=>AD=AE ( 2 cạnh tương ứng)
=>tam giác ADE cân tại A
Mà tam giác ABC cũng cân tại A nên:
góc ABC = góc ACB= góc ADE= goác ADE
Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:
ED//BC
=>BEDC là hình thang
Mà BD=CE
nên: BEDC là hình thang cân(1)
Ta có: ED//BC => góc DEC = góc ECB
Mà góc ECB= góc DCE ( CE là p/g của góc ACE)
=> góc DEC=góc DCE
=> tam giác DEC cân tại D
=>ED=DC (2)
Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.
Bài b ko biết hi hi k mình ra
Tiếp câu b .
Có : \(\Delta ABC\) cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\) (1)
Theo tổng 3 góc trong 1 tam giác :
Với \(\Delta ABC\) => \(\widehat{ABC}+\widehat{ACB}+\widehat{A}=180^0\)
=> \(\widehat{ABC}+\widehat{ACB}=130^0\)
Lại có (1)
=> \(\widehat{ABC}=\widehat{ACB}=\frac{130^0}{2}=65^0\)
Vì tứ giác là hình thang cân (chắc cũng biết tứ giác nào nhỉ :v )
=> ED // BC
=> \(\widehat{DEB}+\widehat{EBC}=180^0\)
=> \(\widehat{DEB}=180^0-65^0=115^0\)
Tương tự với góc \(\widehat{EDC}\)
Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết, dhnb:dấu hiệu nhận biết, đ/n:định nghĩa, cmt:chứng minh trên, t/c: tính chất
3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.
tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.
mà góc EAC và góc ACB ở vị trí so le trong.
Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.
b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.
Có: góc ABC= 45 độ (cmt).
tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.
Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]
=> AD vông góc với BC. [đây là điều thứu hai suy ra được]
Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.
Xét tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)
12 + 12 =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.
a
Từ giả thiết có: ΔABC cân tại A, BD và CE là phân giác.
=> BD và CE là 2 đường trung tuyến hay ED là đường trung bình của ΔABC.
=> BD//CE (1)
Xét ΔBDA và ΔCEA có:
\(\widehat{A}\) chung
AE = AD (gt)
AB = AC (gt)
=> ΔBDA = ΔCEA (c.g.c)
=> `EC=DB` (2)
Từ (1), (2) => BEDC là hình thang cân.
b
ΔABC cân => \(\widehat{B}=\widehat{C}=50^o\)
Tổng 4 góc của tứ giác là `360^o` mà `BEDC` là hình thang cân.
=> \(\widehat{E}=\widehat{D}=\dfrac{360^o-100^o}{2}=130^o\)
a: Xét ΔABC có
BD là đường phân giác ứng với cạnh AB
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(1\right)\)
Xét ΔACB có
CE là đường phân giác ứng với cạnh AC
nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
hay DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC