K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

N là trung điểm của BC

NK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có 

N là trung điểm của BC

K là trung điểm của AC

Do đó: NK là đường trung bình của ΔBAC

Suy ra: \(NK=\dfrac{1}{2}AB\left(1\right)\)

b: Xét ΔABC có

N là trung điểm của BC

M là trung điểm của AB

Do đó: NM là đường trung bình của ΔABC

Suy ra: \(NM=\dfrac{AC}{2}\left(2\right)\)

Ta có: ΔBAC cân tại A

nên \(AB=AC\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

Sửa đề: Cắt BC tại K

1: Xét ΔABC có 

N là trung điểm của AC

NK//AB

Do đó:K là trung điểm của BC

Xét ΔABC có 

N là trung điểm của AC

K là trung điểm của BC

Do đó: NK là đường trung bình

=>NK=1/2AB

2: Xét tứ giác AMKN có 

AM//KN

AM=KN

Do đó:AMKN là hình bình hành

mà AM=AN

nên AMKN là hình thoi

=>KM=KN

hay ΔKMN cân tại K

30 tháng 11 2016

A C B P M N Q

Xét \(\Delta ABC:\)N là trung điểm AC, P là trung điểm BC

\(\Rightarrow NP\)là đường trung bình \(\Delta ABC\)

\(\Rightarrow NP\text{//}AB\)

\(\Rightarrow PQ\text{//}AM\)( Vì \(M\in AB;N\in PQ\))

\(\Rightarrow\)Tứ giác PMAQ là hình thang 

Vậy...

3 tháng 12 2016

pokapu

28 tháng 9 2020

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC

Tứ giác MNCB có MN // BC nên là hình thang

b) Xét ∆EQN và ∆KQC có:

     ^ENQ = ^KCQ (BN//CK, so le trong)

     QN = QC (gt)

     ^EQN = ^KQC (đối đỉnh)

Do đó ∆EQN = ∆KQC (g.c.g)

=> EN = KC ( hai cạnh tương ứng)                  (1)

∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE              (2)

Từ (1) và (2) suy ra KC = BE

Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)

c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)

d) Gọi J là trung điểm của BC 

Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ

Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF

Mà dễ thấy EF // BC nên IJ⊥BC

∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)

28 tháng 9 2020

a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.

=> MN //BC

Tứ giác MNCB có MNBC nên MNCB là hình thang.

b) Xét tứ giác EKCB có EK//BC, BE//CK

=> EKCB là hình bình hành

=> EK = BC (đpcm)

31 tháng 12 2021

a: Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Do đó: DE//BC

hay BDEC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BDEC là hình thang cân

16 tháng 12 2023

MMỉm đang cần rất gấp  giúp mỉm với

 

16 tháng 12 2023

loading...  a) Do MN // AB (gt)

⇒ MN // AE

Do ME // AC (gt)

⇒ ME // AN

Do AM là tia phân giác của ∠BAC (gt)

⇒ AM là tia phân giác của ∠EAN

Xét tứ giác AEMN có:

MN // AE (cmt)

ME // AN (cmt)

⇒ AEMN là hình bình hành

Mà AM là tia phân giác của ∠EAN (cmt)

⇒ AEMN là hình thoi

b) Do D là điểm đối xứng của M qua N (gt)

⇒ N là trung điểm của DM

∆ABC cân tại A có AM là tia phân giác của ∠BAC (gt)

⇒ AM cũng là đường trung trực của ∆ABC

⇒ M là trung điểm của BC

∆ABC có:

M là trung điểm của BC (cmt)

MN // AB (gt)

⇒ N là trung điểm của AC

Tứ giác ADCM có:

N là trung điểm của DM (cmt)

N là trung điểm của AC (cmt)

⇒ ADCM là hình bình hành

⇒ AD // CM

⇒ AD // BM

Do MN // AB (gt)

⇒ MD // AB

Tứ giác ADMB có:

MD // AB (cmt)

AD // BM (cmt)

⇒ ADMB là hình bình hành