K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

2 tháng 5 2018

a. Xét tam giác BMC và tam giác DMA có

MB=MD(gt) BMC=DMA(đối đỉnh)

MA=MC(vì M là trung điềm AC)

Vậy tam giác BMC = tam giác DMA(c-g-c)

=>MBC=MDA( 2 góc tương ứng)

=> AD // BC

b. Xét tam giác AMB và tam giác CMD có

MA=MC(vì M là trung điềm AC)

AMB=CMD( đối đỉnh)

MB=MD(gt)

Vậy tam giác AMB = tam giác CMD(c-g-c)

=> AB=CD(2 cạnh tương ứng)

mà AB=AC(vì tam giác ABC cân tại A)

=> AC=CD

=> tam giác ACD cân tại C

c. trong tam giác DEB có M là trung điểm của BD( vì MD=MB)

=> EM là đường trung tuyến thứ nhất (1)

mặt khác AC=CE(gt)

MC=1/2 AC (vì M là trung điềm AC)

=> MC= 1/2 CE 

18 tháng 5 2016

a) 

a)Sao lại chứng minh  tam giác ACD= tam giác DMA 

Mà tam giác DMC<ADC(xem lại)

b)Xét tam giác DMC và tam giác BMA

       MB=MD(gt)

       DMC=AMB(đđ)

       MA=MC(Vì M là trung điểm AC)

⇒⇒tam giác DMC=tam giác BMA(c.g.c)

⇒⇒AB=DC(cặp cạnh tương ứng)(1)

Mà AB=AC(vì tam giác ABC cân)(2)

       Từ (1) và (2) suy ra:DC=AC

Vậy tam giác ACD cân tại D

c/

+ Xét tam giác BDE có

DM=BM => EM là trung tuyến thuộc cạnh BD của tg BDE (1)

+ Ta có

CA=CE (đề bài)

MA=MC (đề bài)

=> CE=2.MC hay MC=1/3ME (2)

Từ (1) và (2) =>C là trọng tâm của tam giác BDE => DC là trung tuyến thuộc cạnh BE của tg BDE => K là trung điểm của BE

18 tháng 5 2016

       MA=MC(Vì M là trung điểm AC)

$⇒⇒$⇒⇒tam giác DMC=tam giác BMA(c.g.c)

$⇒⇒$⇒⇒AB=DC(cặp cạnh tương ứng)(1)

Mà AB=AC(vì tam giác ABC cân)(2)

       Từ (1) và (2) suy ra:DC=AC

Vậy tam giác ACD cân tại D

c/

+ Xét tam giác BDE có

DM=BM => EM là trung tuyến thuộc cạnh BD của tg BDE (1)

+ Ta có

CA=CE (đề bài)

MA=MC (đề bài)

=> CE=2.MC hay MC=1/3ME (2)

Từ (1) và (2) =>C là trọng tâm của tam giác BDE => DC là trung tuyến thuộc cạnh BE của tg BDE => K là trung điểm của BE

15 tháng 5 2021

undefined

14 tháng 4 2022

đoạn cm tam giác ade vuông bạn dùng tính chất j thế nói mik đc ko

2 tháng 3
  • Chứng minh ∆ADE = ∆ABC:
    Dùng tiêu chí Cạnh-Góc-Cạnh vì:
    • \(A B = A D\) (A là trung điểm của BD).
    • \(A C = A E\) (A là trung điểm của CE).
    • \(\angle B A C = \angle D A E\) (góc đối đỉnh).
  • Chứng minh DE // BC:
    \(\Delta A D E = \Delta A B C\) (theo C-G-C), nên:
    \(\angle A D E = \angle A B C\)\(\angle D E A = \angle A C B\).
    DE // BC theo định lý góc đồng vị.
  • Chứng minh M, A, N thẳng hàng:
    M, N lần lượt là trung điểm của DE và BC nên AM là đường trung bình của tam giác lớn. Đường trung bình đi qua trung điểm nối song song với cạnh còn lại nên M, A, N thẳng hàng.
10 tháng 7 2019

Tham khảo :

Câu hỏi của nguyen thi thom - Toán lớp 7 - Học toán với OnlineMath

Học tốt!!!

10 tháng 7 2019

Câu hỏi của Chi Chi - Toán lớp 7 - Học toán với OnlineMath

Tham khảo tại link trên.