K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

A B C M N I 1 1 1 2

a) Vì \(\Delta ABC\)cân tại A ( GT )

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)( Tính chất tam giác cân )

Xét \(\Delta BMI\left(\widehat{BMI}=90^o\right)\)và \(\Delta CNI\left(\widehat{CNI}=90^o\right)\)có :

          \(BI=CI\)( vì I là trung điểm của BC )

         \(\widehat{ABC}=\widehat{ACB}\)( chứng minh trên )

\(\Rightarrow\Delta BMI=\Delta CNI\)( Cạnh huyền - góc nhọn )

b) VÌ \(\Delta BMI=\Delta CNI\)( chứng minh trên ) 

\(\Rightarrow BM=CN\)( 2 cạnh tương ứng )

 Ta có : \(\hept{\begin{cases}AB=AM+MB\\AC=AN+NC\end{cases}}\)

Mà AB = AC ( vì \(\Delta ABC\)cân tại A ) ; BM = CN ( chứng minh trên )

\(\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\)cân tại A ( Điều phải chứng minh )

c) Vì \(\Delta ABC\)cân tại A nên :

\(\widehat{B_1}=\frac{180^o-M\widehat{AN}}{2}\left(1\right)\)

Vì \(\Delta AMN\)cân tại A nên :

\(\widehat{M_1}=\frac{180^o-\widehat{MAN}}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\widehat{B_1}=\widehat{M_1}\)

Mà \(\widehat{B_1}\)và \(\widehat{M_1}\)ở vị trí đồng vị

\(\Rightarrow MN//BC\)( Dấu hiệu nhận biết 2 đường thẳng song song )

d) Xét \(\Delta ABI\)và \(\Delta ACI\)có :

        \(AI\): cạnh chung

        \(BI=CI\)( vì I là trung điểm của BC )

        \(AB=AC\)( vì \(\Delta ABC\)cân tại A )

\(\Rightarrow\Delta ABI=\Delta ACI\left(c-c-c\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)( 2 góc tương ứng ) 

     \(\widehat{BIA}=\widehat{CIA}\)( 2 góc tương ứng )

Vì \(\widehat{A_1}=\widehat{A_2}\)( chứng minh trên )

=> AI là tia phân giác của \(\widehat{BAC}\)

Vì \(\widehat{BIA}=\widehat{CIA}\)( chứng minh trên )

Mà \(\widehat{BIA}+\widehat{CIA}=90^o\)( 2 góc kề bù )

\(\Rightarrow AI\perp BC\)

e) Áp dụng định lí pi-ta-go vào \(\Delta AIN\)có:

\(IN^2+AN^2=AI^2\)

\(\Rightarrow IN^2=AI^2-AN^2\left(3\right)\)

Áp dụng định lí pi-ta-go vào \(\Delta INC\)có:

\(IN^2+NC^2=IC^2\)

\(\Rightarrow IN^2=IC^2-NC^2\left(4\right)\)

Từ (3) và ( 4)

\(\Rightarrow2IN^2=AI^2-AN^2+IC^2-NC^2\)

\(\Rightarrow2IN^2=\left(AI^2+IC^2\right)-AN^2-NC^2\left(5\right)\)

Theo chứng minh trên ta có : \(AI\perp BC\)

\(\Rightarrow\Delta AIC\)vuông tại I

Áp dụng định lí pi-ta-go vào \(\Delta AIC\)ta có:

\(AC^2=AI^2+IC^2\left(6\right)\)

Từ (5) và (6)

\(\Rightarrow2IN^2=AC^2-AN^2-NC^2\)( Điều phải chứng minh )

Cho tam giác ABC cân tại A,M là trung điểm BC,Kẻ ME vuông góc với AB tại E,MI vuông góc với AC tại I,Chứng minh AE = AI,Chứng minh AM là trung trực của đoạn thẳng EI,Chứng minh EI // BC,AB = 15 cm,BC = 18 cm,Tính độ dài AM và ME,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

a, vì tam giác ABC cân tại A => góc B = góc C ( 2  góc ở đáy bằng nhau )
-tam giác ABM và tam giác ACM có :
AB=AC(gt)                  |
góc B= góc C ( cmt )   | => tam giác ABM=tam giác ACM(c-g-c)
BM=CM (gt)                |
=> góc A1 = góc A2 ( 2 góc t/ứ )
-tam giác AEM và tam giác AIM có
góc AEM=góc AIM(=90 độ)   |
cạnh AM chung                    |=> tam giác AEM= tam giác  AIM ( ch-gn)
góc A1= góc A2(cmt )           |
=> AE=AI(2 cạnh t/ứ)
b, vì tam giác AEI cân tại A => tia phân giác góc A vuông góc với EI 
đặt AM cắt EI tại O
tam giác AEO và tam giác AIO có
góc AOE = góc AOI (=90 độ)   |
AE=AI(cmt)                            | => tam giác AEO và tam giác AIO ( ch-cgv)
AO chung                               |
=> EO = IO ( 2 cạnh t/ứ )
vì AO vuông góc EI và EO = IO =>AO là đg trug trực của EI
mà AM là nối dài của AO => AM là đg trug trực của EI
c, vì tam giác AEI cân tại A => góc AEI = ( 180 độ - góc A ): 2    (1)
   vì tam giác ABC cân tại A  => góc ABC = ( 180 độ - góc A ) : 2   (2)
từ (1) và (2) => góc AEI = góc ABC mà 2 góc này ở vị trí đồng vị => EI // BC
d, vì BM=CM ( gt )   => BM = CM = 18: 2 = 9 (cm)
-AM^2 = AE^2 + BM^2
=>AM^2 = 15^2 - 9^2
=>AM^2 = 144
=>AM   = 12 (cm)

27 tháng 1 2019

Hình bạn tự vẽ

a) CMR: AH = AK:

Xét tam giác AHB vuông tại H và tam AKC vuông tại K, ta có:

AB = AC ( vì tam giác ABC cân tại A )

góc A chung

Do đó: tam giác AHB = tam giác AKC ( ch-gn )

Suy ra: AH = AK ( 2 cạnh tương ứng)

b) CMR: góc KAI = góc HAI:

Xét tam giác KAI vuông tại K và tam giác HAI vuông tại H, ta có:

AH = AK ( chứng minh câu a )

cạnh AI chung

Do đó: tam giác KAI = tam giác HAI ( ch-cgv)

suy ra: góc KAI = góc HAI ( 2 góc tương ứng )

c) CM: AM vuông góc BC tại M ( AM vuông góc tại M nhé bạn )

Xét tam giác BAM và tam giác CAM, có:

cạnh AM chung

AB = AC ( vì tam giác ABC cân tại A )

góc KAI = góc HAI ( chứng minh câu b )

do đó: tam giác BAM = tam giác CAM ( c-g-c)

suy ra: góc AMB = góc AMC ( 2 góc tương ứng )

ta có: góc AMB + góc AMC = 180 độ ( kề bù )

 hay 2. góc AMB = 180 độ

=> 180 độ : 2 = 90 độ

do đó: AM vuông góc BC tại M ( đpcm )

Câu d mình làm sau do máy mình hết pin rồi!

27 tháng 12 2021
Giúp mình bài này đi mà :
4 tháng 8 2019

bạn ơi câu này phải là trên tia đối của BA và CA lấy 2 điểm D và E sao cho BD=CE

a) Vì ∆ABC cân tại A 

=> ABC = \(\frac{180°-BAC}{2}\)

Vì ∆ABC cân tại A 

=> AB = AC 

Mà BD = CE 

=> AB + BD = AC + CE 

Hay AD = AE 

=> ∆ADE cân tại A 

=> ADE = \(\frac{180°-BAC}{2}\)

=> ADE = ABC 

Mà 2 góc này ở vị trí đồng vị 

=> BC //DE 

b) Vì BC //DE 

=> BCED là hình thang 

Vì ∆ADE cân tại A=> ADE = AED 

=> BCED là hình thang cân 

=> BD = CE

=> BDE = CED 

Vì BC //DE 

=> MN//DE 

=> NMD = MDE = 90° 

=> MNE = NED = 90°

=> MDE = NED 

Mà MDE = MDB + BDE 

NED = NEC + CED=

=> NEC = MDB 

Xét ∆ vuông BMD và ∆ vuông CNE ta có : 

BD = CE 

NEC = MDB (cmt)

=> ∆BMD = ∆CNE ( cgv-gn)

 c) Ta thấy ADB là góc ngoài ∆ABC tại đỉnh B

=> BAC + ABC = AMB 

Ta thấy : ANC là góc ngoài ∆ABC tại đỉnh C

=> BAC + ACB = ANC 

Mà ABC = ACB ( ∆ABC cân tại A)

=> AMB = ANC 

=> ∆AMN cân tại A 

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

21 tháng 1 2022

a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:

BC chung.

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).

=> BN = CM (2 cạnh tương ứng).

Ta có: AB = AN + BN; AC = AM + CM.

Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).

=> AM = AN.

b) Xét tam giác AMN: AM = AN (cmt).

=> Tam giác AMN cân tại A.

c) Xét tam giác ABC: 

BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).

I là giao điểm của BM và CN (gt).

=> I là trực tâm.

=> AI là đường cao.

Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.

=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).

7 tháng 5 2018

Bạn vẽ hình ra giùm mk nhé

7 tháng 5 2018
Mình ko gửivđc mong m.m giúp nhanh ạ Mai em cần gấp