Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MBPA có
N là trung điểm của MP
N là trung điểm của BA
Do đó: MBPA là hình bình hành
a) Xét tứ giác AEBM:
+ D là trung điểm của AB (gt).
+ D là trung điểm của ME (M là điểm đối xứng với E qua D).
\(\Rightarrow\) Tứ giác AEBM là hình bình hành (dhnb).
\(\Rightarrow\) AM // BE; AM = BE (Tính chất hình bình hành).
Mà BE = EC (E là trung điểm của BC).
\(\Rightarrow\) AM = EC.
Xét tứ giác ACEM:
+ AM = EC (cmt).
+ AM // EC (AM // BE).
\(\Rightarrow\) Tứ giác ACEM là hình bình hành (dhnb).
b) Xét tam giác ABC cân tại A:
AE là đường trung tuyến (E là trung điểm của BC).
\(\Rightarrow\) AE là đường cao (Tính chất tam giác cân).
Xét hình bình hành AEBM: \(\widehat{AEB}=\) \(90^o\) (AE là đường cao).
\(\Rightarrow\) Tứ giác AEBM là hình chữ nhật (dhnb).
c) Tam giác AEB vuông tại E (\(\widehat{AEB}=\) \(90^o\)).
\(\Rightarrow\) \(S_{\Delta AEB}=\dfrac{1}{2}AE.BE=\dfrac{1}{2}AE.\dfrac{1}{2}BC\) (do (E là trung điểm của BC).
\(Thay:\) \(\dfrac{1}{2}.8.\dfrac{1}{2}.12=24\left(cm^2\right).\)
a,
xét tam giác ABC có đường t/b DE:
=>DE//AC và DE=\(\dfrac{1}{2}\) AC
M là điểm đối xứng của DE:
=>DE+DM=AC
từ trên suy ra:
EM=AC và EM//AC
vậy ACEM là hình bình hành.
b,
Xét tam giác ABC là tam giác cân :
=>AB=AC
mà AC = ME
nên: AB =ME (1)
lại có: AM=MB , MD=DE(2)
từ (1) và (2) suy ra:
AEBM là hình chữ nhật.
c,
Xét tam giác ABC có BE=EC suy ra:
BE=EC=\(\dfrac{1}{2}BC\)=\(\dfrac{12}{2}=6cm\)
vì AEBM là hình chữ nhật nên:
góc AEB = 90\(^o\)<=> AEB là tam giác vuông
vậy \(S_{AEB}=\dfrac{AE.BE}{2}=\dfrac{8.6}{2}=24cm^2\)
\(a,\) Vì M là trung điểm AC và BD nên ABCD là hình bình hành
\(b,\) Vì ABCD là hình bình hành nên \(AD//BC;AD=BC\)
Do đó \(AK//CH;AK=CH(\dfrac{1}{2}AD=\dfrac{1}{2}BC)\)
Do đó AHCK là hình bình hành
Mà \(\Delta ABC\) cân tại A nên trung tuyến AH cũng là đường cao
Do đó \(AH\bot HC\)
Vậy AHCK là hình chữ nhật
\(c,\) Vì AHCK là hình chữ nhật nên trung điểm M của AC cũng là trung điểm của HK
Vậy H,M,K thẳng hàng
\(d,\) Để AHCK là hình vuông thì \(HK\bot AC\) tại M
Mà H,K là trung điểm BC,AC nên HK là đtb \(\Delta ABC\)
Do đó \(HK//AB\)
Mà \(HK\bot AC\) nên \(AC\bot AB\)
Vậy nếu tam giác ABC vuông cân tại A thì AHCK là hình vuông
cho tam giác ABC cân tại A. Gọi M, N, H lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh : Tứ giác MNCB là hình thang cân.
b) Gọi D là điểm đối xứng của H qua N. Các tứ giác AHCD, ADNM là hình gì? Vì sao?
c) Chứng minh : N là trọng tâm của tam giác CMD.
d) MD cắt AC tại E. Chứng minh : BN đi qua trung điểm của HE.
a: Xét tứ giác AECM có
N là trung điểm chung của AC và EM
nên AECM là hình bình hành
c: Để AECM là hình vuông thì góc CAM=45 độ và CM=MA
=>ΔBAC vuông cân tại C