K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EBC}=\widehat{DCB}\)

Xét ΔDBC và ΔECB có 

\(\widehat{DBC}=\widehat{ECB}\)

 BC chung

\(\widehat{DCB}=\widehat{EBC}\)

Do đo: ΔDBC=ΔECB

b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)

nên ΔBEF cân tại E

19 tháng 7 2020

A E D B C F

a,Vì BE là tia phân giác góc B nên

\(\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}\)

Vì CD là tia phân góc góc C nên

\(\widehat{ACD}=\widehat{DCB}=\frac{\widehat{C}}{2}\)

mà góc B = góc C  ( vì tam giác ABC cân tại A )

\(\Rightarrow\)góc ABE = góc EBC = góc ACD = góc DCB 

Vậy góc EBC = góc DCB

*Xét tam giác DBC và tam giác ECB có

            góc DCB = góc EBC ( theo chứng minh trên )

          cạnh BC chung

           góc DBC = góc ECB ( tam giác ABC cân )

Do đó : tam giác DBC =  tam giác ECB ( g.c.g )

b,Vì EF // CD 

\(\Rightarrow\)góc EFB = góc DCB 

mà góc DCB = góc EBC ( theo câu a )

\(\Rightarrow\)góc  EFB = góc EBC hay góc EFB = góc EBF 

Vậy tam giác BEF là tam giác cân tại E

Học tốt

19 tháng 7 2020

A B C E D F 1 2

câu a ý \(\widehat{DCB}\ne\widehat{ECB}\)NHA PHẢI LÀ CHỨNG MInH \(\widehat{DCB}=\widehat{EBC}\)MỚI ĐÚNG PẠN GHI NHẦM THÌ PHẢI

A) 

VÌ \(\Delta ABC\)CÂN TẠI A

 \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

TA CÓ BE LÀ PHÂN GIÁC CỦA \(\widehat{B}\)

\(\Rightarrow\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}\left(1\right)\)

TA CÓ CD LÀ PHÂN GIÁC CỦA \(\widehat{C}\)

\(\Rightarrow\widehat{ACD}=\widehat{DCB}=\frac{\widehat{C}}{2}\left(2\right)\)

CÓ (1) VÀ (2) MÀ  \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{ABE}=\widehat{EBC}=\widehat{ACD}=\widehat{DCB}\)

\(\Rightarrow\widehat{EBC}=\widehat{DCB}\left(ĐPCM\right)\)

XÉT \(\Delta DBC\)\(\Delta ECB\)

\(\widehat{ABC}=\widehat{ACB}\) HAY \(\widehat{DBC}=\widehat{ECB}\)

BC LÀ CẠNH CHUNG

\(\widehat{DCB}=\widehat{EBC}\left(CMT\right)\)

=>\(\Delta DBC\)=\(\Delta ECB\)(G-C-G) (ĐPCM)

B) VÌ \(AF//DC\)

\(\Rightarrow\widehat{F_1}=\widehat{C_2}\left(ĐV\right)\)

MÀ \(\widehat{EBC}=\widehat{DCB}\)HAY\(\widehat{EBC}=\widehat{C_2}\)

\(\Rightarrow\widehat{F_1}=\widehat{EBC}\)( BẮC CẦU )

HAY \(\widehat{F_1}=\widehat{EBF}\)

=> \(\Delta BEF\)CÂN TẠI E ( ĐPCM)

20 tháng 12 2021

bạn nào giúp mình với gấp lắm rồi =((

20 tháng 12 2021

Câu C) CF=2BD nha

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC

Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE

Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK

Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn

a: Xét ΔCDF vuông tại D và ΔCDK vuông tại D có

CD chung

góc FCD=góc KCD
=>ΔCDF=ΔCDK

b: Xét ΔEDC có góc EDC=góc ECD

nên ΔECD cân tại E

=>EC=ED

=>góc ECD=góc EDC

=>góc EDK=góc EKD

=>ΔKED cân tại E

24 tháng 2 2021

toán lớp 7 thì mink chịu rùi ^_^

24 tháng 2 2021

gggggjjjk..hhhyh      iuugln............................lklhuluiiiihhhhhhh ok-

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau