Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: Tính BC
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
c: Ta có: ΔABC=ΔABD
=>\(\widehat{ABC}=\widehat{ABD}\)
Xét ΔBEA vuông tại E và ΔBFA vuông tại F có
BA chung
\(\widehat{EBA}=\widehat{FBA}\)
Do đó: ΔBEA=ΔBFA
=>AE=AF
=>ΔAEF cân tại A
a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)
Xét Tam giác `AMB` và Tam giác `AMC` có:
`AM chung`
\(\widehat{B}=\widehat{C}\) `(CMT)`
`MB = MC (g``t)`
`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`
b, Vì Tam giác `AMB =` Tam giác `AMC (a)`
`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).
Xét Tam giác `EAM` và Tam giác `FAM` có:
AM chung
\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`
\(\widehat{AEM}=\widehat{AFM}=90^0\)
`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`
`=> EA = FA` (2 cạnh tương ứng).
c, *câu này mình hơi bí bn ạ:')
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
Do đó: ΔAEM=ΔAFM
=>AE=AF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: Xét ΔBAM vuông tại A và ΔCAN vuông tại A có
BA=CA
góc B=góc C
=>ΔBAM=ΔCAN
b: ΔBAM=ΔCAN
=>AM=AN
góc MAB=90 độ
góc B=30 độ
=>góc AMN=60 độ
=>ΔAMN đều
góc NAB=120-90=30 độ=góc B
=>ΔNAB cân tại N
góc MAC=120-90=30 độ=góc C
=>ΔMAC cân tại M
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a: Ta có: AE+BE=AB
AF+FC=AC
mà AB=AC
và BE=FC
nên AE=AF
hay ΔAEF cân tại A
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
=>\(\widehat{AEF}=\widehat{ABC}=\widehat{ACB}\)
a) xét ΔBAE và ΔCAF, ta có :
\(\widehat{EAB}=\widehat{FAC}\) (vì là 2 góc vuông)
\(AB=AC\) (vì AB và AC là 2 cạnh bên của ΔABC cân tại A
\(\widehat{B}=\widehat{C}\) (vì \(\widehat{B}\) và \(\widehat{C}\) là 2 góc đáy của ΔABC cân tại A)
⇒ ΔBAE = ΔCAF (g.c.g)
b) vì \(\Delta ABC\) cân tại A, nên
=> \(\widehat{B}=\widehat{C}=\left(180\text{°}-120\text{°}\right)\div2=30\text{°}\)
ta có \(\widehat{BAF}=\widehat{CAE}=120\text{°}-90\text{°}=30\text{°}\)
xét ΔBFA, ta có :
\(\widehat{BAF}+\widehat{B}+\widehat{AFB}=180\text{°}\\ 30\text{°}+30\text{°}+\widehat{AFB}=180\text{°}\\ \Rightarrow\widehat{AFB}=180\text{°}-30\text{°}-30\text{°}=120\text{°}\)
xét ΔCEA, ta có :
\(\widehat{CAE}+\widehat{C}+\widehat{AEC}=180\text{°}\\ 30\text{°}+30\text{°}+\widehat{AEC}=180\text{°}\\ \Rightarrow\widehat{AEC}=180\text{°}-30\text{°}-30\text{°}=120\text{°}\)
ta có : (1)
\(\widehat{AFB}+\widehat{AFE}=180\text{°}\\ 120\text{°}+\widehat{AFE}=180\text{°}\\ \widehat{AFE}=180\text{°}-120\text{°}=60\text{°}\)
ta có : (2)
\(\widehat{AEC}+\widehat{AEF}=180\text{°}\\ 120\text{°}+\widehat{AEF}=180\text{°}\\ \widehat{AEF}=180\text{°}-120\text{°}=60\text{°}\)
từ (1) và (2), ta suy ra \(\widehat{AFE}=\widehat{AEF}=60\text{°}\)
vậy tam giác EAF cân tại A
c) ta có :
\(\widehat{BAF}+\widehat{FAE}+\widehat{EAC}=\widehat{A}\\ 30\text{°}+\widehat{FAE}+30\text{°}=120\text{°}\\ \widehat{FAE}=120\text{°}-30\text{°}-30\text{°}=60\text{°}\)
\(\widehat{AFE}=\widehat{FEA}=\widehat{EAF}=60\text{°}\)
=> ΔAEF là tam giác đều
mỏi 10 ngón tay quá