K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

Hình học lớp 7

a) Vì góc BHC = góc KMH = 90 độ

=> MK // AC

Nên góc C = góc KMB, mà góc C = góc B => góc B= góc KMB

Xét :ΔBKM và ΔMDB ta có

+ góc DBM=góc KMB ( vừa chứng minh )

+ BM là cạnh chung

=> ΔBKM=ΔMDB ( ch-gn )

b) Vì góc KHE= góc MEH = 90 độ

=> ME//BH

nên góc KHM= góc EMH (cặp góc so le trong)

Xét: ΔKHM và ΔEHM ta có

+ góc KHM = góc EMH ( vừa chứng minh )

+ MH là cạnh chung

=> ΔKHM=ΔEHM (ch-gn )

c) vì ΔBKM=ΔMDB => DM=BK

ΔKHM=ΔEHM => KH=ME

ta có DM + ME = BK + KH

=> DM + ME = BH

chúc bạn học tốt. nhớ tick cho mk nha

7 tháng 2 2017

giờ còn câu tick nữa à ....

17 tháng 3 2021

à há lllllllo bạn

17 tháng 3 2021

a) Xét tg ABH và ACK có :

AB=AC(tg ABC cân tại A)

\(\widehat{A}-chung\)

\(\widehat{AHB}=\widehat{AKC}=90^o\)

=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)

b) Do tg ABH=ACK (cmt)

\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

=> Tg OBC cân tại O

=> OB=OC (đccm)

c) Do : AB=AC (tg ABC cân tại A)

MB=NC(gt)

=> AB+BM=AC+CN

=> AM=AN

=> Tg AMN cân tại A

\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

- Do tg ABH=ACK (cmt)

=> AK=AH

=> Tg AKH cân tại A

\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)

Mà chúng là 2 góc đồng vị

=> KH//MN (đccm)

#H

27 tháng 1 2021

Sai đề rồi phải là kẻ \(AH\perp BC\left(H\in BC\right)\) nhé!

A B C H E F

a) Xét 2 Δ vuông: Δ AHB = Δ AHC (c.h-g.n) vì:

\(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{ACB}=\widehat{ABC}\left(gt\right)\end{cases}}\)

=> \(BH=HC\)

b) Xét 2 Δ vuông: Δ BHF = Δ CHE (c.h-g.n) vì:

\(\hept{\begin{cases}HB=HC\left(p.a\right)\\\widehat{HBF}=\widehat{HCE}\left(gt\right)\end{cases}}\)

=> \(HE=HF\) => Tam giác HEF cân tại H

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

11 tháng 11 2019

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

11 tháng 11 2019

Xét \(\Delta ABC\) có:

c) Ta có \(\Delta ABC\) cân tại \(A\left(cmt\right).\)

=> \(\widehat{B}=\widehat{C}\) (tính chất tam giác cân).

Xét 2 \(\Delta\) vuông \(HBM\)\(KCM\) có:

\(\widehat{MHB}=\widehat{MKC}=90^0\left(gt\right)\)

\(BM=CM\) (như ở trên)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

=> \(\Delta HBM=\Delta KCM\) (cạnh huyền - góc nhọn).

=> \(HM=KM\) (2 cạnh tương ứng).

Chúc bạn học tốt!

1: Xét ΔABM và ΔECM có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó:ΔABM=ΔECM

2: Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

Do đó:ABEC là hình bình hành

Suy ra: AC//BE

23 tháng 9 2019


A B C M D E

a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :

AB = AC ( gt )

BM = CM ( M là trung điểm BC )

AM : Cạnh chung

=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )

b)  Ta có :  \(\Delta ABM\) = \(\Delta ACM\) ( cmt )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\)  = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90

Hay AM \(\bot\) BC

10 tháng 12 2016

Kí hiệu tam giác viết là t/g nhé

a) BI là phân giác ABC nên ABI = CBI

Xét t/g BID vuông tại D và t/g BIF vuông tại F có:

BI là cạnh chung

DBI = FBI (cmt)

Do đó, t/g BID = t/g BIF ( cạnh góc vuông và góc nhọn kề) (đpcm)

b) t/g BID = t/g BIF (câu a) => ID = IF (2 cạnh tương ứng) (1)

C/m tương tự câu a ta cũng có: t/g ADI = t/g AEI ( cạnh góc vuông và góc nhọn kề)

=> ID = IE (2 cạnh tương ứng)

Từ (1) và (2) => ID = IE = IF (đpcm)

 

10 tháng 12 2016

ban tu ve hinh nhengaingungngaingung

a) Xet tam giac BID va tam giac BIF co:

BI:canh chung

goc DBI=goc IBF(vi tia BI la tia phan giac cua goc DBF)

goc BDI=goc BFI(=90do)

Vay tam giac BID=tam giac BIF(canh huyen, goc nhon)

b) Vi tam giac BID=tam giac BIF(cau a)

Nen ID=IF(2 canh tuong ung) (1)

Xet tam giac AID va tam giac AIE co:

AI:canh chung

goc DAI=goc EAI(vi tia AI la tia phan giac cua goc DAE)

goc ADI=goc AEI(=90do)

Nen tam giac AID=tam giac AIE(canh huyen,goc nhon)

Suy ra:ID=IE(2 canh ung) (2)

Tu (1), (2)\(\Rightarrow\) IF=ID=IE

Chuc ban ngay cang hoc gioi len nheokok

Hen gap lai ban vao dip khac nheok
 

Trả lời:

P/s: Học kém Hình nên chỉ đucợ mỗi câu a

a,  +Xét tam giác ABM và ACM có:
  AB=AC(Giả thiết)  --
  AM là cạnh chung)  I  =>tam giác ABM=ACM (C-C-C)

                                     ~Học tốt!~