K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

góc AEF = 80 độ

10 tháng 5 2020

Ta có: trên nửa mặt phẳng bờ AB có chứa điểm G, có tam giác ABD. Nối D với F Ta có:

Góc FBA= góc ABC-góc FBC Góc ABC =(1800 - BAC)/2=1400 :2=700

=> góc FBC=góc EBA=300 => FBA= 700 -300 =400

=>góc FBA= góc BAI=400 =>tam giác AFB cân tại F

=>FA=FB

Xét tam giác BDF và tam giác ADF có:

DF cạnh chung

FB=FA

BD=AD

=>tam giác BDF= tam giác ADF(c-c-c)

=>góc ADF= góc BDF = góc ABD/2= 300 Mà góc EBA= 30 0

=>góc ADF= góc ABE=300

Ta có tam giác ABC cân tại A co AH là đường cao =>AD la p.giác của tam giác ABC

=>góc BAH= góc CAH=góc BAC/2=200 => góc DAF= góc BAE=200

Xét tam giác BAE và tam giác DAI có

Góc DAI= góc BAD

AB=AD

Góc ADF= góc ABD

=>tam giác BAD = tam giác DAF(g-c-g)

=>AE=AF ( cặp cạnh tương ứng)

9 tháng 8 2017

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\widehat{A}=90^o,\widehat{C}=30^o\)

nên \(\widehat{B}=180^o-\widehat{A}-\widehat{C}\)

\(\widehat{B}=180-90-30=60^o\)

Vì góc C đối xứng AB, Góc B đối xứng với AC mà góc B >góc C

nên AC>AB

\(\widehat{BAH}=180-60-90=30\)

Xét \(\Delta ABH\)Và \(\Delta AIH\)

Có:\(\widehat{AHI}=\widehat{AHB}=90^o\)

\(HB=HI\left(gt\right)\)

\(AH\)chung

\(\Rightarrow\)=nhau theo trường hợp (c.g.c)

suy ra \(\widehat{IAH}=\widehat{BAH}=30^o\)(2 góc tương ứng)

Mà \(\widehat{IAH}+\widehat{BAH}=30+30=60^o\)

\(\Delta\)ABI có 2 góc 60 độ là tam giác đều

câu c hình như bị sai

9 tháng 8 2017

A C B 60 30 H I

Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ

29 tháng 5 2018

a) Ta có  \(\widehat{AHB}=90^o\)

Theo tính chất góc ngoài của tam giác, ta có:

\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)

Xét tam giác ABI và tam giác BEC có:

AI = BC (gt)

BA = EB (gt)

\(\widehat{IAB}=\widehat{CBE}\)  (cmt)

\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)

b) Do \(\Delta ABI=\Delta BEC\Rightarrow BI=EC\)

Gọi giao điểm của EC với AB và BI lần lượt là J và K.

Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)

Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)

Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)

c) Chứng minh hoàn toàn tương tự ta có \(IC\perp BF\)

Gọi giao điểm của IC và BF là T.

Xét tam giác IBC có IH, CK, BT là các đường cao nên chúng đồng quy tại một điểm.

Vậy AH, EC, BF đồng quy tại một điểm.

29 tháng 5 2018

Vẽ hình đi bạn

Rồi mình giúp bạn làm

Vẽ hình xong gửi tin nhắn cho mình

:) Chúc bạn học tôt 

@@