Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ACB}=180^0-70^0-60^0=50^0\)
AM là phân giác của góc BAC
=>\(\widehat{BAM}=\widehat{CAM}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot70^0=35^0\)
Xét ΔAMC có \(\widehat{AMC}+\widehat{C}+\widehat{CAM}=180^0\)
=>\(\widehat{AMC}+35^0+60^0=180^0\)
=>\(\widehat{AMC}=85^0\)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Suy ra: BD=CE(hai cạnh tương ứng)
b) Ta có: ΔABD=ΔACE(cmt)
nên AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b2 :
a, xét tam giác ABD và tam giác ACE có: góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-cgv)
b, tam giác ABD = tam giác ACE (câu a)
=> góc ABD = góc ACE (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc HBC = góc ABC - góc ABD
góc HCB = góc ACB - góc ACE
=> góc HBC = góc HCB
=> tam giác HBC cân tại H (Dh)
Bạn tìm bài này theo đường link này nha!
https://olm.vn/hoi-dap/question/36403.html
chúc bạn may mắn
Vì tam giác ABC là tam giác cân nên AM vừa là đường cao vừa là phân giác của góc A
\(\Rightarrow\widehat{MAC}=\frac{70^0}{2}=35^0\)
\(\widehat{ACM}=90^0-35^0=55^0\)
Tam giác ABC cân tại A có AM là đường cao
suy ra AM là phân giác ABC
Nên AMB=AMC=70/2=35,5
Xét tam giác AMC có
AMC+ACM+MAC=180
90+ACM+35.5=180
nên ACM=54.5