Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì tam giác ABC cân tại A ,mà góc A =100 độ => góc B=góc C= (180 độ -góc A) : 2 = (180 độ - 100 độ ) : 2 = 80độ : 2 = 40 độ
=>Góc ACM = 40độ -20 độ = 20độ , Góc ABM = 40độ - 10 độ =30độ
Vì CE=CB (gt) => tam giác ECB cân tại C =>Góc CBE = góc CEB = (180độ-góc ECB):2 = ( 180độ - 40độ) :2 = 140độ:2 = 70 độ
Mà góc EBM +góc MBC = góc EBC => Góc EBM + 10 độ = 70 độ => gócEBM = 70độ -10độ=60độ (1)
Xét tam giác EMC và tam giác BMC có : Cạnh MC chung , Góc ECM= góc BCM , EC = BC(gt)
=> tam giác EMC = tam giác BMC => Góc CEM = góc CBM = 10độ
Lại có : góc BEM + góc MEC = góc BEC => góc BEM + 10 độ = 70 độ => góc BEM = 70 độ - 10 độ = 60độ (2)
Từ (1) và (2) suy ra tam giác BEM đều
a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-70^0}{2}=55^0\)
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
c: Xét ΔAMN có
AB/BM=AC/CN
nên MN//BC
d: Ta có: ΔAMN cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
=>AI⊥MN
mà MN//BC
nên AI⊥BC
mà AD⊥BC
và AD,AI có điểm chung là A
nên D,A,I thẳng hàng
e: Xét ΔBEC có
D là trung điểm của BC
DA//BE
Do đó: A là trung điểm của EC
Vì\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)
=> \(\widehat{B}=\widehat{C}\)=50o
=> \(\widehat{A}\)=80o
Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)
<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)
Xét \(\Delta ABK\)có
\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)
=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)
=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a, vì Dx//BC =>GÓC xDA=ACB (so le trong ) . Mà xDA=70 độ =>góc ACB=70 độ
b,ta có : CAB +DAB=180 độ (KỀ BÙ) Mà CAB=40 độ
=>40 + DAB =180 => DAB=140
VÌ ; Ay là phân giác của góc BAD => DAy=BAy=BAD/2=140/2=70
mÀ xDA=70
=>xDA=DAy. 2 góc này ở vị trì so le trong =>Dx//Ay. Dx//BC =>Ay//BC
a) tam giác BEC cân tai C (vì CB=CE)
M nằm trên phân giác góc C nên M nằm trên trung trực BE
suy ra tam giác BME cân tai M (1)
từ đó có 2 tam giác MCB và MCE bằng nhau theo trường hợp c.c.c
suy ra góc BMC = góc CME =150 đô (vì tam giác BMC có 1 góc 10 độ, 1 góc 20 độ)
suy ra góc BME = 60 độ (2)
từ (1) và (2) suy ra tam giác BME đều
b) theo phần a) tam giác BME đều, nên EBM = 60 độ
suy ra BA là phân giác của góc EBM (vì góc ABM =30 độ)
và BA cũng là trung trực của EM, nên AE=AM
vậy tam giác AEM cân tại A nên góc AEM = góc AME = 10 độ (tam giác MBC= tam giacMEC)
Vậy góc AMB = góc AME+góc EMB = 10 độ + 60 độ = 70 độ
i don't now