K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CBlấy điểm N sao cho MB = CN. Từ B hạBE AM ( E AM) ⊥ , từ C hạCF AN ( F AN) ⊥ Chứng minh rằng:a/ Tam giác AMN cân b/ BE = CF c/  BME = CNFBài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đườngthẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BACBài 3:...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ

BE AM ( E AM) ⊥ 

, từ C hạ

CF AN ( F AN) ⊥ 

Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/

  BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ

BE d ( E d) ⊥ 

, từ C hạ

CF d ( F d) ⊥ 

. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥

và trên tia HM lấy điểm E sao cho HM = EM. Kẻ

HN AB ⊥

và trên tia

HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.

0
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
13 tháng 2 2022

a) \(\Delta ABC\) cân tại A (gt).

\(\Rightarrow AB=AC;\widehat{ABC}=\widehat{ACB}\) (Tính chất tam giác cân).

Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}=180^o-\widehat{ABC}.\\\widehat{ACE}=180^o-\widehat{ACB}.\end{matrix}\right.\)

Mà \(\widehat{ABC}=\widehat{ACB}\left(cmt\right).\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}.\)

Xét \(\Delta ABD\) và \(\Delta ACE:\)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right).\\ AB=AC\left(cmt\right).\\ BD=CE\left(gt\right).\\ \Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right).\)

\(\Rightarrow AD=AE\) (2 cạnh tương ứng).

b) Xét \(\Delta BMD\) vuông tại M và \(\Delta CNE\) vuông tại N:

\(BD=CE\left(gt\right).\\ \widehat{MDB}=\widehat{NEC}\left(\Delta ABD=\Delta ACE\right).\)

\(\Rightarrow\Delta BMD=\Delta CNE\) (cạnh huyền - góc nhọn).

c) Ta có: \(\left\{{}\begin{matrix}AN=AE-NE.\\AM=AD-MD.\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}AE=AD\left(\Delta ACE=\Delta ABD\right).\\NE=MD\left(\Delta BMD=\Delta CNE\right).\end{matrix}\right.\)

\(\Rightarrow AN=AM.\)

13 tháng 2 2022

Hình nữa ạ 

13 tháng 2 2022

Mọi người trả lời hộ mình bốn phần nha, combo cả hình nữa nha.Cảm ơn mọi người

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó: ΔABD=ΔACE

Suy ra: AD=AE
b: Xét ΔBMD vuông tại M và ΔCNE vuông tại N có

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔBMD=ΔCNE

c: Ta có: ΔBMD=ΔCNE

nên DM=EN

Ta có: AM+MD=AD

AN+NE=AE
mà AD=AE

và DM=EN

nên AM=AN

15 tháng 5 2021

undefined

14 tháng 4 2022

đoạn cm tam giác ade vuông bạn dùng tính chất j thế nói mik đc ko

1) Cho tam giác ABC đều. Trên AB lấy 2 điểm D và K sao cho AD = DK = KB. Từ d kẻ đường thẳng vuông góc với AB ở E. Từ E kẻ đường thẳng vuông góc với AC cắt BC ở F.  a) Chứng minh: KE // BC  b) Chứng minh: tam giác DEF đều2) Cho tam giác ABC vuông cân tại A, trung tuyến AM. E là điểm bất kì trên MC. Kẻ BH, CK cùng vuông góc với tia AE.  a) Chứng minh: BH = AK  b) Chứng minh: tam giác MHK vuông cân.3) Cho tam giác...
Đọc tiếp

1) Cho tam giác ABC đều. Trên AB lấy 2 điểm D và K sao cho AD = DK = KB. Từ d kẻ đường thẳng vuông góc với AB ở E. Từ E kẻ đường thẳng vuông góc với AC cắt BC ở F.

  a) Chứng minh: KE // BC

  b) Chứng minh: tam giác DEF đều

2) Cho tam giác ABC vuông cân tại A, trung tuyến AM. E là điểm bất kì trên MC. Kẻ BH, CK cùng vuông góc với tia AE.

  a) Chứng minh: BH = AK

  b) Chứng minh: tam giác MHK vuông cân.

3) Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của AC. Trên tia đối tia MB lấy N sao cho MB = MN. Đường thẳng qua B // AC cắt NC ở P. Vẽ phân giác BD của góc ABM. Qua D kẻ đường thẳng BM cắt BM ở H và cắt CP ở K.

  a) Chứng minh: CN = CA

  b) Chứng minh tam giác BPC vuông cân

c) Chứng minh: KH = KP

  d) Tính góc DBK

  e) Biết BC = 8cm. Tính chu vi tam giác DKC

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

25 tháng 1 2020

Hình bạn tự vẽ nha :))

a)* Ta có: \(\Delta ABC\)cân tại A <=> AB=AC

\(\hept{\begin{cases}AM=AB+MB\\AN=AC+NC\end{cases}\Rightarrow AM=AN}\)(do \(AB=AC;MB=NC\))

\(\Rightarrow\Delta AMN\)cân tại A

Từ \(\Delta ABC\)cân tại A, có: \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(1)

Từ \(\Delta AMN\)cân tại A, có: \(\widehat{AMN}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2), suy ra: \(\widehat{ABC}=\widehat{AMN}\)

\(\Rightarrow MN//BC\)(2 góc đồng vị bằng nhau)

b) Xét \(\Delta ABI\)và \(\Delta ACI\)có:

\(\hept{\begin{cases}AB=AC\\AIchung\\IB=IC\end{cases}\Rightarrow\Delta ABI=\Delta}ACI\left(ccc\right)\)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\)(2 góc tương ứng)      

\(\Rightarrow AI\)là p/giác của \(B\widehat{A}C\) (3)

Tương tự, ta có: \(\widehat{MAE}=\widehat{NAE}\)

\(\Rightarrow AE\)là p/ giác của \(\widehat{BAC}\)(4)

Từ (3) và (4), ta có: A,I,E thẳng hàng