K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

b: Ta có: \(\widehat{ABG}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABG}=\widehat{ACE}\)

Xét ΔABG và ΔACE có

AB=AC

\(\widehat{ABG}=\widehat{ACE}\)

BG=CE

Do đó: ΔABG=ΔACE
=>AG=AE
=>ΔAGE cân tại A

c: Xét ΔHAB vuông tại H và ΔKAC vuông tại K có

AB=AC

\(\widehat{BAH}=\widehat{CAK}\)(ΔABG=ΔACE)

Do đó: ΔHAB=ΔKAC

=>AH=AK

Xét ΔAGE có \(\dfrac{AH}{AG}=\dfrac{AK}{AE}\)

nên HK//GE

=>HK//BC

b) Xét ΔADB vuông tại D và ΔEDC vuông tại D có 

DB=DC(cmt)

DA=DE(gt)

Do đó: ΔADB=ΔEDC(hai cạnh góc vuông)

Suy ra: AB=EC(Hai cạnh tương ứng)

mà AB=AC(ΔBAC cân tại A)

nên CA=CE

Xét ΔCAE có CA=CE(cmt)

nên ΔCAE cân tại C(Định nghĩa tam giác cân)

27 tháng 6 2021

giúp mình làm với , cảm ơn nhiều :33

 

26 tháng 4 2021

tam giác ABC cân tại A-->góc ABC=góc ACB (đ/lí tam giác cân)

góc ACE+góc ACB=180 độ (kề bù)

góc ABD+góc ABC=180 độ (kề bù)

mà góc ABC=góc ACB (cmt)

-->góc ACE=góc ABD (bắc cầu)

xét tam giác ABD và tam giác ACE có:

+AB=AC(gt)

+BD=CE(gt)

+góc ABD=góc ACE(cmt)

vậy tam giác ABD=tam giác ACE(cgc)

suy ra AD=AE

AD=AE(cmt)-->tam giác ADE cân tại A

26 tháng 4 2021

thank you!Thanks for ticking me! I didn't expect I was right, I also think you will tick later like everyone else! I didn't expect you to tick early>))

a)

Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔABH vuông tại H và ΔDCH vuông tại D có 

AH=DH(gt)

BH=CH(cmt)

Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)

Suy ra: AB=DC(Hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên AC=DC(đpcm)

b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có 

EH chung

AH=DH(gt)

Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)

Suy ra: AE=DE(Hai cạnh tương ứng)

Xét ΔACE và ΔDCE có 

CA=CD(cmt)

CE chung

AE=DE(cmt)

Do đó: ΔACE=ΔDCE(c-c-c)

9 tháng 5 2020

1.

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

2.

a) ta có:  \(\Delta OAB,\Delta OAC\) có diện tích bằng nhau và cùng đáy OA nên khoảng cách từ B , C kẻ đến OA 

nên BH=CK

b) gọi AK giao với BC tại M

Xét \(\Delta BHM\)và   \(\Delta CKM\)  có: 

..........

3.

a. xét tgiac ADC và tgiac ADB có

AD là cạnh chung

góc DAB = góc DAC(gt)

AB=AC(gt)

vậy tg ADC=tg ADB(c.g.c)

b.theo cminh cau a ta có DB=DC(2 cạnh tương ứng)

nên AD là đường trung tuyến ứng với cạnh BC mà G là trọng tâm tâm giác ABC nên A D G thẳng hàng

k mk nha thack ae

Bài 1  : 

a) Vì AH = HD => EH là đg trung tuyến của tg ADE
Khi đó C thuộc đg trung tuyến EH (1)
Do tam giác  ABC cân tại A
mà AH là đường cao của tam giác ABC
=> AH là đg trung trực của tam giác ABC
=> BH = CH
=> BH = CH = \(\frac{1}{2}\)BC
Lại do BC = CE
=> CH = \(\frac{1}{2}\) CE
hay CE = \(\frac{2}{3}\) EH (2)
Từ (1); (2) => C là trọng tâm của tam giác ADE.

b) Có : AH là đường cao của ΔABC
⇒ Góc AHC = 90
⇒ Góc DHC = 90 (kề bù)
Xét ΔAHE và ΔDHE có:
+ AH = DH (gt)
+ Góc AHE = góc DHE = 90
+ HE chung
⇒ ΔAHE = ΔDHE
⇒ Góc EAH = góc EDH (1)
Lại có: Tia AC cắt DE tại M
Mà C là trong tâm của ΔADE
⇒ AM là trung tuyến của ΔADE
⇒ M là trung điểm của DE
Mà ΔDHE là tam giác vuông tại H (do DHE = 90 )
⇒ HM là đường trung tuyến của cạnh huyền
⇒ HM = DM = EM
⇒ ΔHMD cân tại M
⇒ Góc MHD = góc MDH (2)
Từ (1) + (2) ⇒ Góc EAH = góc MHD
Mà hai góc này là hai góc đồng vị
⇒ AE // HM (đpcm)

 a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của CB

=>CB=2CH

mà CB=CE

nên CE=2CH

=>\(\dfrac{EC}{EH}=\dfrac{2}{3}\)

Xét ΔEAD có

EH là đường trung tuyến

\(EC=\dfrac{2}{3}EH\)

Do đó: C là trọng tâm của ΔEAD

b: Xét ΔEAD có

C là trọng tâm

AC cắt DE tại M

Do đó: M là trung điểm của DE

Xét ΔEAD có

H,M lần lượt là trung điểm của DA,DE

=>HM là đường trung bình của ΔEAD

=>HM//AE

c: Để HM\(\perp\)AB thì AE\(\perp\)AB

=>ΔABE vuông tại A

Ta có: ΔABE vuông tại A

mà AC là đường trung tuyến

nên AC=CB=CE

=>AC=CB

mà AB=AC

nên AC=AB=BC

=>ΔABC đều

=>\(\widehat{ABC}=60^0\)

Khi ΔABC đều thì \(\widehat{HAC}=\dfrac{60^0}{2}=30^0\)

Ta có: \(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

=>\(\widehat{ACE}+60^0=180^0\)

=>\(\widehat{ACE}=120^0\)

Ta có: CA=CE

=>ΔCAE cân tại C

=>\(\widehat{CAE}=\widehat{CEA}=\dfrac{180^0-\widehat{ACE}}{2}=30^0\)

\(\widehat{HAE}=\widehat{HAC}+\widehat{CAE}=30^0+30^0=60^0\)

Xét ΔEAD có

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

mà \(\widehat{EAD}=60^0\)

nên ΔEAD đều

Ta có: ΔABC đều

mà AH là đường cao

nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

H là trung điểm của AD

=>\(AD=2\cdot AH=3\sqrt{3}\left(cm\right)\)

ΔADE đều

mà AM là đường trung tuyến

nên AM\(\perp\)DE
=>ΔAMD vuông tại M

Xét ΔAMD vuông tại M có \(cosDAM=\dfrac{AM}{AD}\)

=>\(\dfrac{AM}{3\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)

=>\(AM=4,5\left(cm\right)\)