K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 12 2019
a)bn c/m hbh có 1 góc vuông là hcn
b) c/m EACH là hbh (EA//HC và EA=HC)
mà N là trung điểm AH nên N cx là trung điểm EC
c)ta có NM là đường trung bình tam giác BHA nên NM=HC/2(1)
mà BH=HC (AH là đc nên cx là đtt trong tam giác cân)
=> BH=BC/2(2)
từ (1) và (2)=>NM=BC/4=12/4=3cm
ta có NM vuông góc AH (NM//BC, AH vuông góc BC)
SAHM=1/2 x 8x3=12 cm2
d)ta có QC=QK,BH=HC
=>QH//BK
lại có KQ=QC,KI=IH
=>QI là đtb t.g KHC
=>QI//HC
mà HC vuoong góc HF
nên QI cx vuông góc HF
tam giác HQF có đường cao QI,HK cùng cắt tại I
nên I là trực tâm
=>IF vuông góc HQ
mà HQ//BK
=>IF vuông góc BK
a) Xét tứ giác AHBK có
D là trung điểm của đường chéo AB(gt)
D là trung điểm của đường chéo KH(K đối xứng với H qua D)
Do đó: AHBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AHBK có \(\widehat{AHB}=90^0\)(AH⊥BC)
nên AHBK là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(AH⊥BC)
nên H là trung điểm của BC(Định lí tam giác cân)
⇒\(BH=\dfrac{BC}{2}=\dfrac{16}{2}=8cm\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=8^2+9^2=145\)
\(\Leftrightarrow AB=\sqrt{145}\)(cm)
Xét ΔABH vuông tại H có HD là đường trung tuyến ứng với cạnh AB(D là trung điểm của AB)
nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
nên \(HD=AD=\dfrac{AB}{2}=\dfrac{\sqrt{145}}{2}cm\)
Nửa chu vi của tam giác ADH là:
\(P_{ADH}=\dfrac{HD+AD+AH}{2}=\dfrac{\left(\dfrac{\sqrt{145}}{2}+\dfrac{\sqrt{145}}{2}+8\right)}{2}=\dfrac{\sqrt{145}+8}{2}cm\)
Diện tích của tam giác ADH là:
\(S_{ADH}=\sqrt{P\cdot\left(P-AD\right)\cdot\left(P-AH\right)\cdot\left(P-DH\right)}\)
\(=\sqrt{\dfrac{\sqrt{145}+8}{2}\cdot\left(\dfrac{\sqrt{145}+8}{2}-\dfrac{\sqrt{145}}{2}\right)\cdot\left(\dfrac{\sqrt{145}+8}{2}-\dfrac{\sqrt{145}}{2}\right)\cdot\left(\dfrac{\sqrt{145}+8}{2}-8\right)}\)
\(=\sqrt{\dfrac{\sqrt{145}+8}{2}\cdot16\cdot\dfrac{\sqrt{145}-8}{2}}\)
\(=\sqrt{\dfrac{145-64}{2}\cdot16}\)
\(=\sqrt{\dfrac{81}{2}\cdot16}=18\sqrt{2}cm^2\)