1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp
1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q
chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)
2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE
3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.
chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)
4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB
5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.
chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)
giúp mình với :3. mình sắp thi rồi
p/s không biết làm bài nào chứ không phải lười đâu :((
A B C H K D M
+) Tam giác ABC cân tại A có AH là đường cao nên đồng thời là đường trung tuyến => H là trung điểm của BC
Kẻ HK // CD ( K thuộc AB)
+) Tam giác BCD có: HK // CD; H là trung điểm của BC
=> K là trung điểm của BD
=> KB = KD (1)
+) Tam giác AKH có : M là trung điểm của AH; MD // HK
=> D là trung điểm của AK => KD = DA (2)
Từ (1)(2) => KB = KD = DA => AD = 1/3 AB
de the k bt