Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lê Vũ Anh Thư - Toán lớp 8 | Học trực tuyến
A B C I D
Xét \(\Delta ABD\)có BI là phân giác \(\Rightarrow\frac{AB}{BD}=\frac{AI}{DI}\)( định lý ) (1)
Ta có: \(\frac{AI}{AD}=\frac{3}{4}\)\(\Rightarrow\frac{DI}{AD}=\frac{1}{4}\)
\(\Rightarrow\frac{AI}{ID}=\frac{3}{4}:\frac{1}{4}=3\)(2)
Từ (1) và (2) \(\Rightarrow\frac{AB}{BD}=3\)\(\Rightarrow AB=3BD\)
Xét \(\Delta ABC\)cân tại A có AD là phân giác
\(\Rightarrow\)D là trung điểm của BC \(\Rightarrow BD=\frac{1}{2}BC\)
\(\Rightarrow AB=3.\frac{1}{2}BC=\frac{3}{2}BC\)
Vì \(\Delta ABC\)cân tại A \(\Rightarrow AB=AC=\frac{3}{2}BC\)
mà \(\Delta ABC\)có chu vi là 80 cm
\(\Rightarrow AB+AC+BC=80\)\(\Leftrightarrow\frac{3}{2}BC+\frac{3}{2}BC+BC=80\)
\(\Leftrightarrow4.BC=80\)\(\Leftrightarrow BC=20\)( cm )
\(\Rightarrow AB=AC=\frac{3}{2}.20=30\)( cm )
Vậy \(AB=AC=30cm\), \(BC=20cm\)
A C D B I
Ta có : \(\frac{AI}{AD}=\frac{3}{4}\Leftrightarrow\frac{AI}{ID}=3\)
ABC là tam giác cân và AD là phân giác nên BC = 2BD
Xét tam giác ABD có BI là phân giác nên :
\(\frac{AI}{ID}=\frac{AB}{BD}=3\Leftrightarrow AB=3BD\)
Lại có : \(AB+AC+BC=80\Leftrightarrow2AB+2BD=80\)( \(AB=AC\))
\(\Leftrightarrow6BD+2BD=80\Leftrightarrow8BD=80\Leftrightarrow BD=10\)
\(\Leftrightarrow BC=2BD=20\)( cm )
\(\Rightarrow AB=AC=\frac{3}{2}.20=30\)( cm )
Vậy .......
A B C I D
Ta có:\(\dfrac{AI}{AD}=\dfrac{3}{4}\Leftrightarrow\dfrac{AI}{ID}=3\)
ABC là tam giác cân và AD là phân giác nên BC=2BD
Xét tam giác ABD có BI là phân giác nên:
\(\dfrac{AI}{ID}=\dfrac{AB}{BD}=3\Leftrightarrow AB=3BD\)
Lại có: \(AB+AC+BC=80\Leftrightarrow2AB+2BD=80\left(AB=AC\right)\)
\(\Leftrightarrow6BD+2BD=80\Leftrightarrow8BD=80\Leftrightarrow BD=10\)
\(\Leftrightarrow BC=2BD=20\left(cm\right)\)
A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
A B C D I
Xét tam giác ABD Có AI là phân giác
=> \(\frac{BD}{ID}\) = \(\frac{AB}{AI}\)
=> \(\frac{AI}{ID}\) = \(\frac{AB}{BD}\)
ID = AD - AI = AD - 3AD/4 = AD/4
=> \(\frac{AB}{BD}\) = \(\frac{AI}{ID}\) = \(\frac{3AD}{4}\)\(\frac{4}{AD}\)= 3
=> AB = 3BD
=> AB = \(\frac{3BC}{2}\)
Chu vi tam giác cân ABC = 80cm
=> AB + AC + BC = 80
=> 2AB + BC = 80
=> 3BC + BC = 80
=> BC = 20 cm
mình cũng có bài giống bạn á