K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

AB=AC
góc BAE chung

=>ΔAEB=ΔAFC

=>AE=AF

Xét ΔAQF vuong tại Q và ΔAPE vuông tại P có

AF=AE
góc QAF chung

=>ΔAQF=ΔAPE
=>AP=AQ

Xét ΔABC có AP/AB=AQ/AC

nên PQ//BC

22 tháng 10 2023

loading...   a) Tứ giác ADHE có:

∠AEH = ∠ADH = ∠HAE = 90⁰ (gt)

⇒ ADHE là hình chữ nhật

⇒ AH = DE

b) BHD vuông tại D

I là trung điểm của HB (gt)

⇒ ID = IH = BH : 2

⇒ ∆IDH cân tại I

⇒ ∠IDH = ∠IHD

⇒ ∠HID = 180⁰ - (∠IDH + ∠IHD)

= 180⁰ - 2∠IHD (1)

∆CEH vuông tại E

K là trung điểm HC (gt)

⇒ KE = KC = HC : 2

⇒ ∆KEC cân tại K

⇒ ∠KEC = ∠KCE

⇒ ∠CKE = 180⁰ - (∠KEC + ∠KCE)

= 180⁰ - 2∠KEC (2)

Do HD ⊥ AB (gt)

AC ⊥ AB (gt)

⇒ HD // AC

⇒ ∠IHD = ∠KCE (đồng vị)

⇒ 2∠IHD = 2∠KCE (3)

Từ (1), (2) và (3) ⇒ ∠CKE = ∠HID

Mà ∠CKE và ∠HID là hai góc đồng vị

⇒ DI // KE

a: Xét tứ giác EAFH có 

\(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^0\)

Do đó: EAFH là hình chữ nhật

26 tháng 9 2021

undefined

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CF là đường cao ứng với cạnh AB(gt)

BE cắt CF tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH⊥BC

b) Xét tứ giác BHCK có 

HC//BK(gt)

BH//CK(gt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà M là trung điểm của BC(gt)

nên M là trung điểm của HK

hay H,M,K thẳng hàng(đpcm)