K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2016

a) Ta có: \(EA=\frac{1}{2}AB\) và \(AF=\frac{1}{2}AC\). Mà AB = AC => EA=AF 

FA=FC và DB=DC => DF//AB hay DF//AE   (1)

EB=EA và DB=DC => DE//AC hay DE//AF   (2)

Từ (1) và (2) => tứ giác AEDF là hbh . Mà AE = EF (cmt)

=> tứ giác AEDF là h/thoi 

b) \(EA=\frac{1}{2}AB=5\left(cm\right)\)

\(\Rightarrow S_{AEDF}=4\cdot5=20\left(cm^2\right)\)

c) tứ giác AEDF là hình vuông <=> A^  = 90o 

(nguyên văn câu c là: tam giác ABC cần đk gì để tứ giác AEDF là hình vuông đúng ko bạn? Hay là như trên? Nếu giống như ở trên câu hỏi bạn đăng thì câu c giải như vậy đủ rồi. Còn nếu giống như tớ vừa viết thì thêm dòng này vào sau cùng nhé : " . Mà tam giác ABC cân tại A. Vậy tứ giác AEDF là hình vuông <=> tam giác ABC vuông cân tại A")

Tự vẽ hình bạn nhé ^^!

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

31 tháng 12 2018

A E F C D B

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt)

(theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu  ∆ABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật vừa là hình thoi).

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

21 tháng 4 2017

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt)

(theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ∆ABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật vừa là hình thoi).

10 tháng 11 2017

Nguyên bản văn mẫu nhe bạn!!!

16 tháng 6 2020

A B C F D E

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE ( gt ) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu \(\Delta ABC\) vuông tại A thì AEDF là hình chữ nhật ( vì là hình bình hành có một góc vuông )

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông ( vì vừa là hình chữ nhật, vừa là hình thoi )

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BC/2=5(cm)

mà AD=EF(AEDF là hình chữ nhật)

nên EF=5cm

c: Để AEDF là hình vuông thì AD là tia phân giác của góc FAE

=>AD là tia phân giác của góc BAC

Vậy: Khi D là chân đường phân giác kẻ A xuống BC thì AEDF là hình vuông

13 tháng 12 2018

A B C D E F

a) Xét \(\Delta ABC\) có E,F lần lượt là trung điểm của AC , BC nên EF là đường trung bình của tam giác  ABC nên EF//AB

Suy ra \(\widehat{FAE}=90^o\)

Xét tam giác ABC có D,F lần lượt là trung điểm của AB , BC nên DF là đường trung bình của tam giác ABC nên DF//AC

Suy ra \(\widehat{DAE}=90^o\)

Xét tứ giác  AEFD có \(\widehat{EAF}=\widehat{AEF}=\widehat{DEF}=90^o\)nên tứ giác AEFD là hình chữ nhật

Vậy tứ giác AEFD là hình chữ nhật 

b, Vì EF là đường trung bình của tam giác ABC nên \(EF=\frac{AB}{2}=\frac{6}{2}=3\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A nên \(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2\Rightarrow AC^2=100-36=64\)

Khi đó \(AC=\sqrt{64}=8\left(cm\right)\)

Vì E là trung điểm của AC nên \(AE=\frac{8}{2}=4\left(cm\right)\)

Khi đó \(S_{ADFE}=EF.AE=3.4=12\left(cm^2\right)\)

Vậy \(S_{ADFE}=12cm^2\)

c,  Để tứ giác ADFE là hình vuông \(\Leftrightarrow DF=EF\Leftrightarrow\frac{AB}{2}=\frac{AC}{2}\Leftrightarrow AB=AC\Rightarrow\Delta ABC\)vuông cân

Vậy tứ giác ADFE là hình vuông khi và chỉ khi  tam giác ABC vuông cân.