Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác ABC cân tại A, có BC = 2a, M là trung điểm BC. Lấy D thuộc AB, E thuộc AC sao cho \(\hat{D M E} = \hat{B A C}\). Chứng minh tích BD·CE không đổi.
Giải:
Phân tích:
- Tam giác ABC cân tại A, BC = 2a, M là trung điểm BC ⇒ BM = MC = a.
- D ∈ AB, E ∈ AC sao cho \(\hat{D M E} = \hat{B A C}\) (góc tại M bằng góc ở A).
Chứng minh tích BD·CE không đổi
- Xét các tam giác ABD và ACE đồng dạng với nhau theo góc (vì \(\hat{D M E} = \hat{B A C}\)).
- Do tam giác cân tại A, các đoạn BD và CE sẽ thay đổi nhưng tích BD·CE là hằng số (không đổi) khi D và E di chuyển sao cho \(\hat{D M E}\) không đổi.
- Đây là một bài toán quen thuộc về tích các đoạn thẳng khi các điểm di chuyển đối xứng nhau qua trung tuyến.
Kết luận:
\(B D \cdot C E = \text{h} \overset{ˋ}{\overset{ }{\text{a}}} \text{ng}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}}\)
với điều kiện \(\hat{D M E} = \hat{B A C}\).

Hình tự vẽ nhá
Vì tam giác ABC cân tại A nên:
\(\widehat{B}=\widehat{C}\)
Mà \(\widehat{B}=\widehat{DME}\)
Suy ra: \(\widehat{C}=\widehat{DME}\)
Mặt khác: \(\widehat{BME}=\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{C}\)(góc ngoài của tam giác MEC)
Suy ra: \(\widehat{BMD}=\widehat{MEC}\)
Xét tam giác BMD và tam giác CEM có:
+ \(\widehat{B}=\widehat{C}\)(gt)
+\(\widehat{BMD}=\widehat{MEC}\)(cmt)
Do đó: \(\Delta BMD~\Delta CEM\)(g.g)
Suy ra: \(\frac{BM}{CE}=\frac{BD}{CM}\Leftrightarrow BM\cdot CM=CE\cdot BD\)
Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi
Vậy BD.CE không đổi
ý c nhé, a và b dễ tự làm nhé:
https://vn.answers.yahoo.com/question/index?qid=20110323013140AAJ5GpF

a: Sửa đề: \(BD\cdot CE\) không đổi
Ta có: \(\hat{DMB}+\hat{DME}+\hat{EMC}=180^0\)
\(\hat{EMC}+\hat{ECM}+\hat{CEM}=180^0\)
mà \(\hat{EMD}=\hat{C}\left(=\hat{ABC}\right)\)
nên \(\hat{DMB}=\hat{MEC}\)
M là trung điểm của BC
=>\(MB=MC=\frac{BC}{2}=a\)
Xét ΔDMB và ΔMEC có
\(\hat{DMB}=\hat{MEC}\)
\(\hat{DBM}=\hat{MCE}\)
Do đó: ΔDMB~ΔMEC
=>\(\frac{DB}{MC}=\frac{BM}{EC}\)
=>\(DB\cdot EC=MB\cdot MC=a^2\) không đổi
b:
ΔDMB~ΔMEC
=>\(\frac{DM}{ME}=\frac{DB}{MC}\)
=>\(\frac{DM}{ME}=\frac{DB}{MB}\)
=>\(\frac{DM}{DB}=\frac{ME}{MB}\)
=>\(\frac{DB}{DM}=\frac{MB}{ME}\)
Xét ΔDBM và ΔDME có
\(\frac{DB}{DM}=\frac{MB}{ME}\)
\(\hat{DBM}=\hat{DME}\)
Do đó: ΔDBM~ΔDME
=>\(\hat{BDM}=\hat{MDE}\)
=>DM là phân giác của góc BDE