Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H K M N O
tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB
ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)
suy ra AM = AN ( 2 cạnh tương ứng )
tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân
b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )
dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )
suy ra BA = Ck ( 2 cạnh tương ứng )
c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân
\(\Delta AHK\)và \(\Delta AMN\) có chung đỉnh
mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN
d) kéo dài HB và CK cắt nhau tại O
nối AO
xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)có
AO là cạnh huyền chung
AH = AK
do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )
e) xét tam giác \(BAD\)và \(\Delta CAD\)có
BA = CA ( tam giác ABC cân tại A )
DA = DC (gt)
AD là canh chung
do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)
phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã
tiếp nhé
suy ra góc BAD = góc CAD ( 2 góc tương ứng )
vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)
ta có BH = CK ( cmt)
và HO = KO (cmt)
suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )
hay BO = OC
xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)
do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)
suy ra góc BAO = góc CAO ( 2 góc tương ứng )
vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)
từ (1) và (2) suy ra A;D;O thẳng hàng
a, tam giác ABC cân tại A (Gt)
=> góc ABC = góc ACB (tc)
góc ABC + góc ABM = 180
góc ACB + góc ACN = 180
=> góc ABM = góc ACN
xét tam giác ABM và tam giác ACN có : BM = CN (gt)
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABM = tam giác ACN (c-g-c)
=> AM = AN (đn)
=> tam giác AMN cân tại A (đn)
b, tam giác AMN cân tại A (câu a)
=> góc AMN = góc ANM (tc)
xét tam giác MBH và tam giác NCK có : MB = CN (gt)
góc MHB = góc CKN = 90
=> tam giác MBH = tam giác NCK (ch-gn)
=> BH = CK (đn)
c, tam giác MBH = tam giác NCK (câu b)
=> góc HBM = góc KCN (đn)
góc HBM = góc CBO (đối đỉnh)
góc KCN = góc BCO (đối đỉnh)
=> góc CBO = góc BCO
=> tam giác BOC cân tại O (đl)
a) Có I là trung điểm của BC \(\Rightarrow AI\)là đường trung tuyến của \(\Delta ABC\)mà \(\Delta ABC\)cân \(\Rightarrow AI\)vừa là đường trung tuyến vừa là đường cao hay \(AI\perp BC\)
Có \(BC=12\left(cm\right)\Rightarrow\frac{1}{2}BC=6m\)hay\(BI=6cm\). Áp dụng định lý Py-ta-go cho tam giác vuông \(ABI\)ta có :
\(AI^2+BI^2=AB^2\Rightarrow AI^2=AB^2-BI^2\)
\(\Leftrightarrow AI^2=10^2-6^2=64\Rightarrow AI=8cm\)
b) Có \(\widehat{ABM}\)là góc ngoài tại \(\widehat{ABC}\Rightarrow\widehat{ABM}=\widehat{BAC}+\widehat{ACB}\)
Có \(\widehat{ACN}\)là góc ngoài tại \(\widehat{ACB}\Rightarrow\widehat{ACN}=\widehat{BAC}+\widehat{ABC}\)
Mà \(\widehat{ACB}=\widehat{ABC}\)( do \(\Delta ABC\)cân ) nên\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM\)và\(\Delta ACN\)có:
\(BM=CM\left(gt\right)\)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
\(AB=AC\)( \(\Delta ABC\)cân )
\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\Rightarrow AN=AN\left(dpcm\right)\)
c) \(\Delta BOC\)là tam giác cân tại O
d) Nối O với I , chứng minh cộng góc là ra \(\widehat{AIB}+\widehat{BIO}=180^o\)( dựa vaò đường cao và tam giác cân , từ đó suy ra )
a) ABC cân tại A (gt) => AB=AC và góc ABC = góc ACB
=> góc ABM = góc ACN ( các góc kề bù với góc ABC và góc ACB)
Xét tam giác ABM và tam giác ACN có
AB=AC
góc ABM= góc ACN (cmt)
BM=CN )gt)
=> tam giác ABM = tam giác ACN ( c.g.c)
=> AM=AN ( 2 cạnh tương ứng)
b) tam giác ABM = tam giác ACN (cmt)
=> góc M= góc N (cặp góc tương ứng)
Xét tam giác HBM và tam giác KCN có
góc BHM= góc CKN =90 độ (BH vuông góc AM, AN vuông góc CK)
BM = CN (Gt)
góc M= góc N (cmt)
=> tam giác HBM = tam giác KCN ( cạnh huyền - góc nhọn)
c) TA có tam giác HBC và tam giác KCN (cmt)
=> góc HBM = góc KCN (hai goc tương ứng)
MÀ góc HBM = góc CBO ( hai góc đối đỉnh )
góc KCN=góc BCO ( hai góc đối đỉnh )
=> góc CBO= góc BCO
=> tam giác OBC cân tại O ( dấu hiệu nhận biết tam giác vuông)