Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
tự kẻ hình nha
a)xét tam giác ADB và tam giác ADC có
A1=A2(gt)
AD chung
AB=AC(gt)
=> tam giác ADB= tam giác ADC(cgc)
b) vì tam giác BCE vuông tại C=> BEC+EBC=90 độ=> BEC=90 độ-EBC
ta có ACB+ACE=BCE=90 độ=> ACE=90 độ-BCE
vì tam giác ABC cân A=> ABC=ACB
=> BEC=ACE=90 độ-ABC=> tam giác ACE cân A
c) xét tam giác AME và tam giác AMC có
AE=AC( tam giác ACE cân A)
AME=AMC(=90 độ)
AM chung
=> tam giác AME=tam giác AMC(ch-cgv)
=> EM=CM( hai cạnh tương ứng)
=> M là trung điểm => BM là trung tuyến
vì AB=AC mà AC=AE=> AB=AE=> A là trung điểm BE=> CA là trung tuyến
từ tam giác ABD= tam giác ACD=> BD=CD (hai cạnh tương ứng)=> D là trung điểm BC=> ED là trung tuyến
Vì ED giao AC tại N mà ED,AC, BM là trung tuyến=> BM, AC,ED giao nhau tại N=> N thuộc BM=> B,N,M thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó:ΔAEM=ΔAFM
Suy ra:ME=MF
hay ΔMEF cân tại M
c: Ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của FE
hay AM⊥FE
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét tam giác AMB và tam giác AMC có
AM _ chung
AB = AC
^MAB = ^MAC
Vậy tam giác AMB = tam giác AMC (c.g.c)
b, Xét tam giác AEM và tam giác AFM có
AM _ chung
^MAE = ^MAF
Vậy tam giác AEM = tam giác AFM (ch-gn)
=> AE = AF ( 2 cạnh tương ứng )
=> EM = FM ( 2 cạnh tương ứng )
Xét tam giác MEF có EM = FM
Vậy tam giác MEF cân tại M
c, AE/AB = AF/AC => EF // BC
mà tam giác ABC cân tại A có AM là phân giác
đồng thời là đường cao
=> AM vuông BC
=> AM vuông EF
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét △ABM và △ACM, có:
+ AB = AC
+ Góc BAM = góc CAM (AM là đường phân giác của △ABC)
+ AM cạnh chung
Vậy △ABM = △ACM (c-g-c)
b) Vì △ABM = △ACM
=> Góc AMB = góc AMC
Ta có: góc AMB + AMC = 1800
=> 1800 = 2AMB
AMB = \(\dfrac{180^0}{2}\) = 900
Vì AMB = AMC = 900
Suy ra: AM ⊥ BC
Vậy AM ⊥ BC
Câu c không biết làm nha bạn.
Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC và AM là đường cao
Xét ΔEBC có
M là trung điểm của BC
MA//EC
Do đó: A là trung điểm của EB
Xét ΔEBC có
M là trung điểm của BC
A là trung điểm của EB
Do đó: MA là đường trung bình
=>MA//EC
hay EC⊥BC
=>ΔECB vuông tại C
mà CA là đường trung tuyến
nên CA=AE
hay ΔACE cân tại A