K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BD=DC=AB=căn2
Dễ thấy 
ABDC là hinh thoi 
Lấy I là trung điểm BC. Dùng định lí pitago có AI=1=IC=IB nên có BAC vuông tại A nên ABCD là hình vuông 

21 tháng 3 2020

A B C D M K

a) Xét \(\Delta\)ABM và \(\Delta\)KCM có: MK = MA ; MB = MC ; ^AMB = ^KMC ( đối đỉnh )

=> \(\Delta\)ABM = \(\Delta\)KCM => AB = KC (1)

Vì \(\Delta\)ABC cân có AM là đường trung tuyến => AM là đường trung trực  hay KM là đường trung trực => KB = KC(2)

\(\Delta\)ABC cân => AB = AC (3)

Từ (1) ; (2) (3) => AB = AC = KB = KC => ABKC là hình thoi

b) ABKC là hình thoi => KC //AB => CD //AB mà theo đề AD //BC 

=> ABCD là hình bình hành 

c) \(\Delta\)ABC cân có AN kaf đường trung tuyến => AM vuông góc BC mà AD // BC => AD vuông AM  => ^DAK = ^DAM = 90 độ 

Ta có: BM = 1/2 . BC = 6 : 2 = 3 cm AB = 5 cm 

\(\Delta\)ABM vuông tại M . Theo định lí Pitago => AM = 4 cm 

=> AK = 2AM = 2.4 = 8cm

AD = BC = 6cm ( ABCD là hình bình hành )

=> S ( DAK ) = AD.AK : 2 = 6.8 : 2 = 24 ( cm^2) 

d) Để ABKC kaf hình vuông; mà ABKC là hình thoi  nên ^BAC = 90 độ 

=> tam giác ABC Có thêm điều kiện vuông tại A thì ABKC là hình vuông.

23 tháng 2 2021

(x-5) (x-7)=0

3 tháng 12 2019

A B C M K D

a) Do t/giác ABC cân tại A có AM là đường trung tuyến

=> AM cũng là đường cao

=> AM \(\perp\)BC hay AK \(\perp\)BC

Xét tứ giác ABKC

có AM = MK (gt) ; BM = CM (gt)

 AK \(\perp\)BC (cmt)

=> ABKC là hình thoi

b) Do ABKC là hình thoi => AB // CK hay AB // CD (vì K, C,D thẳng hàng)

Xét tứ giác ABCD có AB // CD (cmt) AD // BC (gt)

=> ABCD là hình bình hành

c) Ta có: BC // AD (gt)

   AM \(\perp\)BC (cm câu a)

=> AM \(\perp\)AD \(\equiv\)A

=> \(\widehat{KAD}=90^0\)

Ta có: BM = MC = 1/2BC = 1/2.6 = 3 cm

Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:

 AB2 = AM2 + BM2

=> AM2 = AB2 - BM2 = 52 - 32 = 25 - 9 = 16

=> AM = 4 (cm)

Ta lại có: AM + MK = AK => AK = 2AM (do AM = MK)

=> AK = 2.4 = 8 (cm)

Do ABCD là hình bình hành => BC = AD = 6 cm

Diện tích t/giác DAK là: SDAK  = 6.8/2 = 24 (cm2)

5 tháng 1 2017

Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi 

Bài làm 

a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )

Nên  Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC

  vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)

Xét tam giác AMB vuông tại M có:

AM2 + BM2 = AB2

AM2 + 32     = 52

AM2 + 9     =  25

AM2           =  25 - 9 =16

\(\Rightarrow\)AM= \(\sqrt{16}=4\)

Vậy S ABC = \(\frac{1}{2}AM.BC\)\(\frac{1}{2}4.6=12\)

b/ Xét tứ giác AMCN có :

OA=OC (gt)

OM=ON ( N đối xứng với M qua O )

\(\Rightarrow\)Tứ giác AMCN là hình bình hành

Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0

Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật

C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )

Nếu tam giác ABC vuông cân tại A thì có :

AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC 

Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A