Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BD=DC=AB=căn2
Dễ thấy
ABDC là hinh thoi
Lấy I là trung điểm BC. Dùng định lí pitago có AI=1=IC=IB nên có BAC vuông tại A nên ABCD là hình vuông
a) Xét \(\Delta\)ABM và \(\Delta\)KCM có: MK = MA ; MB = MC ; ^AMB = ^KMC ( đối đỉnh )
=> \(\Delta\)ABM = \(\Delta\)KCM => AB = KC (1)
Vì \(\Delta\)ABC cân có AM là đường trung tuyến => AM là đường trung trực hay KM là đường trung trực => KB = KC(2)
\(\Delta\)ABC cân => AB = AC (3)
Từ (1) ; (2) (3) => AB = AC = KB = KC => ABKC là hình thoi
b) ABKC là hình thoi => KC //AB => CD //AB mà theo đề AD //BC
=> ABCD là hình bình hành
c) \(\Delta\)ABC cân có AN kaf đường trung tuyến => AM vuông góc BC mà AD // BC => AD vuông AM => ^DAK = ^DAM = 90 độ
Ta có: BM = 1/2 . BC = 6 : 2 = 3 cm AB = 5 cm
\(\Delta\)ABM vuông tại M . Theo định lí Pitago => AM = 4 cm
=> AK = 2AM = 2.4 = 8cm
AD = BC = 6cm ( ABCD là hình bình hành )
=> S ( DAK ) = AD.AK : 2 = 6.8 : 2 = 24 ( cm^2)
d) Để ABKC kaf hình vuông; mà ABKC là hình thoi nên ^BAC = 90 độ
=> tam giác ABC Có thêm điều kiện vuông tại A thì ABKC là hình vuông.
a) Do t/giác ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AM \(\perp\)BC hay AK \(\perp\)BC
Xét tứ giác ABKC
có AM = MK (gt) ; BM = CM (gt)
AK \(\perp\)BC (cmt)
=> ABKC là hình thoi
b) Do ABKC là hình thoi => AB // CK hay AB // CD (vì K, C,D thẳng hàng)
Xét tứ giác ABCD có AB // CD (cmt) AD // BC (gt)
=> ABCD là hình bình hành
c) Ta có: BC // AD (gt)
AM \(\perp\)BC (cm câu a)
=> AM \(\perp\)AD \(\equiv\)A
=> \(\widehat{KAD}=90^0\)
Ta có: BM = MC = 1/2BC = 1/2.6 = 3 cm
Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:
AB2 = AM2 + BM2
=> AM2 = AB2 - BM2 = 52 - 32 = 25 - 9 = 16
=> AM = 4 (cm)
Ta lại có: AM + MK = AK => AK = 2AM (do AM = MK)
=> AK = 2.4 = 8 (cm)
Do ABCD là hình bình hành => BC = AD = 6 cm
Diện tích t/giác DAK là: SDAK = 6.8/2 = 24 (cm2)
Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi
Bài làm
a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )
Nên Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC
vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)
Xét tam giác AMB vuông tại M có:
AM2 + BM2 = AB2
AM2 + 32 = 52
AM2 + 9 = 25
AM2 = 25 - 9 =16
\(\Rightarrow\)AM= \(\sqrt{16}=4\)
Vậy S ABC = \(\frac{1}{2}AM.BC\)= \(\frac{1}{2}4.6=12\)
b/ Xét tứ giác AMCN có :
OA=OC (gt)
OM=ON ( N đối xứng với M qua O )
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0
Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật
C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )
Nếu tam giác ABC vuông cân tại A thì có :
AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC
Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A