Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AH\perp BC\)
=> AH là đường cao của \(\Delta ABC\)
\(\Delta ABC\) cân tại A có AH là đường cao cũng là đường trung tuyến
\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Xét \(\Delta HAB\) vuông tại H (AH là đường cao) có:
\(AB^2=AH^2+BH^2\left(Pytago\right)\\ \Rightarrow AH^2=AB^2-BH^2\\ \Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
a, vì tam giác ABC cân => góc B = góc C
xét tam giác ABH và ACH ta có
AB =AC
góc B = góc C
ah là cạnh chung
=> tam giác ABH = ACH
=> HB = HC ( hai cạnh tương ứng)
b, HB =HC
mà HB + HC = 8cm => HB = HC = 8: 2 = 4 cm
xét tam giác ABH vuông tại h có
AH mũ 2 + BH mũ 2 = ab mũ 2
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ hai + 16 = 25
AH mũ 2 = 25 -16
=> AH mũ 2 = 9
=> AH = cân bậc hai của 9 = 3
k mình nha và kết bạn với mình nữa nhá