Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm. Chọn D
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm.
Chọn D
Do tam giác ABC cân tại A nên AM là đường trung tuyến đồng thời là đường cao. BM=1/2 BC=5cm
Áp dụng định lí Pytago trong tam giác ABM ta có:
AB2 = BC2 + BM2 = 122 + 52 = 169 ⇒ AB = 13cm. Chọn B
Bạn tự kẻ hình nhé .
a)Vì AD là phân giác của \(\Delta ABC\)cân tại A
\(\Rightarrow AD\)là trung tuyến của \(\Delta ABC\)
Xét \(\Delta ABC\),có:
AD,BE là hai đường trung tuyến
O là giao điểm của AD và BE
\(\Rightarrow O\)là trọng tâm của \(\Delta ABC\)
b)Vì AD là trung tuyến của \(\Delta ABC\)
\(\Rightarrow D\)là trung điểm của BC
\(\Rightarrow BD=\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)
Vì AD là phân giác của \(\Delta ABC\)cân tại A
\(\Rightarrow AD\)là đường cao của \(\Delta ABC\)
Áp dụng định lí Pytago cho \(\Delta ABD\)vuông tại D ,có:
\(AD^2=AB^2-BD^2=5^2-4^2=9\)
\(\Rightarrow AD=\sqrt{9}=3\left(cm\right)\)
Vì O là trọng tâm của \(\Delta ABC\)
\(\Rightarrow OD=\frac{1}{3}AD=\frac{1}{3}.3=1\left(cm\right)\)
c)Để O là giao điểm của 3 đường phân giác của \(\Delta ABC\)
thì \(BE\)là phân giác của \(\Delta ABC\)
mà BE là đường trung tuyến của \(\Delta ABC\)
\(\Leftrightarrow\Delta ABC\)đều .
a,Áp dụng tính chất tổng ba góc trong 1 tam giác vào \(\Delta ABC\),có:
\(180^o=\widehat{A}+\widehat{B}+\widehat{C}\)
\(\Rightarrow\widehat{C}=180^o-(\widehat{A}+\widehat{B})\)
\(=180^o-140^o\)
\(=40^o\)
Vậy \(\widehat{C}=40^o\)
b,Vì \(\widehat{A}>\widehat{B}=\widehat{C}\left(100^o>40^o=40^o\right)\)
\(\Rightarrow BC>AC=AB\)(Quan hệ giữa góc và cạnh đối diện )
Vậy BC là cạnh lớn nhất của tam giác ABC
c, Vì G là trọng tâm của tam giác ABC
\(\Rightarrow AG=\frac{2}{3}AM\)
\(\Rightarrow AM=AG:\frac{2}{3}\)
\(\Rightarrow AM=8.\frac{3}{2}\)
\(\Rightarrow AM=12\left(cm\right)\)
Vậy AM=12 cm
k mik nha !
sorry mik vẽ hình ko đc chuẩn lắm thông cảm nha
b) Ta có: BM=CM(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(ΔACB cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Có BM = BC/2 = 6cm
Áp dụng định lí Pytago trong tam giác vuông ABM có:
AM2 = AB2 - BM2 = 102 - 62 = 64 ⇒ AM = 8m. Chọn C
Tam giác ABC cân tại A nên AM đồng thời là đường cao và M là trung điểm của BC
Khi đó ta có BM2 = AB2 - AM2 = 102 - 82 = 36 ⇒ BM = 6cm.
⇒ BC = 6.2 = 12cm. Chọn A