K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

21 tháng 6 2016

cái này dễ èo 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔABC có

H là trung điểm của CB

HD//AB

=>D là trung điểm của AC

ΔAHC vuông tại H có HD là trung tuyến

nên DH=DC

=>ΔDHC cân tại D

=>DM vuông góc HC

=>DM//AH

a: Xét ΔABD vuông tại D và ΔACD vuông tại C có

AB=AC

AD chung

Do đó: ΔABD=ΔACD

=>DB=DC

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)

Do đó: ΔAED=ΔAFD

=>AE=AF

=>ΔAEF cân tại A

 

a: Ta có: ΔABC cân tại A

mà AD là đường phân giác ứng với cạnh đáy BC

nên AD là đường cao ứng với cạnh BC

Xét ΔABC có 

AD là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

AD cắt BE tại H

Do đó: H là trực tâm của ΔBAC

Suy ra: CH\(\perp\)AB

29 tháng 8 2021

Cảm ơn bạn!

 Nhưng mình biết làm câu a với b rồi bạn làm cho mình câu c với d với

Bài 1.Cho tam giác ABC cân tại A. Kẻ đường cao BD và CE. Trên tia đối của tia BA lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho BM=CNa)Chứng minh tam giác BEC bằng tam giác CDBb)Chứng minh tam giác ECN bằng tam giác DBMc)Chứng tỏ ED // MNBài 2.Cho tam giác ABC cân tại A có góc A nhỏ hơn 90độ .Kể BH vuông góc với AC, CK vuông góc với AB(H thuộc AC, K thuộc AB).Gọi O là giao điểm của BH và CKa)Chứng...
Đọc tiếp

Bài 1.Cho tam giác ABC cân tại A. Kẻ đường cao BD và CE. Trên tia đối của tia BA lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho BM=CN

a)Chứng minh tam giác BEC bằng tam giác CDB

b)Chứng minh tam giác ECN bằng tam giác DBM

c)Chứng tỏ ED // MN

Bài 2.Cho tam giác ABC cân tại A có góc A nhỏ hơn 90độ .Kể BH vuông góc với AC, CK vuông góc với AB(H thuộc AC, K thuộc AB).Gọi O là giao điểm của BH và CK

a)Chứng minh tam giác ABH bằng tam giác ACK

b)Chứng minh tam giác OBK bằng tam giác OCH

c) Trên nửa mặt phẳng bờ BC không chứa điểm A lấy điểm I sao cho IB=IC. Chứng minh ba điểm A,O,I thẳng hàng 

Bài 3:Cho tam giác ABC cân tại A .Trên cạnh AB lấy điểm E.Trên tia đối của tia CA lấy điểm F sao cho BE=CF.Nối EF cắt BC tại O.Kẻ EI song song với AF(I thuộc BC)

a)Chứng minh tam giác BEI là tam giác cân

b)Chứng tỏ OE-OF

C)Đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại K.Chứng tỏ tam giác EKF là tam giác cân và Ok vuông góc với EF

*NOTE :Mình chỉ cần các bạn làm giúp mk ý cuối cùng của mỗi bài thôi, khó lắm! Các bạn nghĩ hộ mình nha!Bạn nào thích thì tham khảo các ý trên luôn nha! cảm ơn nhiều!!!!!!!!!!!!!!

 

 

6
3 tháng 2 2016

bạn viết có mỏi tay ko

3 tháng 2 2016

Qúa mỏi nhưng không sao.Cảm ơn bạn đã quan tâm!

 

Sửa đề: DH vuông góc với BC

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔHBD(cmt)

nên DA=DH(hai cạnh tương ứng)

Xét ΔADK vuông tại A và ΔHDC vuông tại H có 

DA=DH(cmt)

AK=HC(gt)

Do đó: ΔADK=ΔHDC(hai cạnh góc vuông)

Suy ra: DK=DC(hai cạnh tương ứng)

Ta có: BA+AK=BK(A nằm giữa B và K)

BH+HC=BC(H nằm giữa B và C)

mà BA=BH(ΔBAD=ΔBHD)

và AK=HC(gt)

nên BK=BC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)

TỪ (1) và (2) suy ra BD là đường trung trực của CK

hay BD⊥CK

Xét ΔBKC có 

BD là đường cao ứng với cạnh KC(cmt)

CA là đường cao ứng với cạnh BK(gt)

CA cắt BD tại D(gt)

Do đó: D là trực tâm của ΔBKC(Tính chất ba đường cao của tam giác)

Suy ra: KD là đường cao ứng với cạnh BC

mà DH là đường cao ứng với cạnh BC(gt)

và KD, DH có điểm chung là D

nên K,D,H thẳng hàng(đpcm)