Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 theo bài ra có tam giác abc=def
a=27do f=52do
mà a=d
=>a=d=27do
=> d=27 do
f=c=52do
=>c =52do
goc b=e
ma ta co a+b+c=d+e+f=180do
thay số 27+b+52=27+e+52=180
=>b=180-(27+52)=101
=>b=e=101
cho hết rồi tính chi nữa
1 tam giác có 3 góc cho hết 3 góc rồi thì tính tam giác nào nữa vậy bạn
Answer:
a,
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Mà đề ra: \(\widehat{A}=40^o\)
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A)
\(\Rightarrow40^o+\widehat{B}+\widehat{B}=180^o\)
\(\widehat{2B}=140^o\)
\(\widehat{B}=70^o\)
\(\Rightarrow\widehat{B}=\widehat{C}=70^o\)
b,
Theo đề ra: Tam giác ABC cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=50^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{A}+100^o=180^o\)
\(\Rightarrow\widehat{A}=80^o\)
c,
Theo đề ra: Tam giác ABC cân tại A
\(\Rightarrow\widehat{C}=\widehat{B}=60^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{A}+120^o=180^o\)
\(\Rightarrow\widehat{A}=60^o\)
Kẻ AH \(\perp\) BC.
Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).
=> AH là trung tuyến (Tính chất các đường trong tam giác cân).
=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.
Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.
Mà ^BAD = 36o (gt).
=> ^ABC = ^BAD = 36o.
Mà 2 góc này ở vị trí so le trong.
=> AD // BC (dhnb).
Mà AH \(\perp\) BC (cách vẽ).
=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.
Kẻ MH // DB; M \(\in\) AD.
Xét tứ giác DMHB có:
+ MH // DB (cách vẽ).
+ MD // HB (do AD // BC).
=> Tứ giác DMHB là hình bình hành (dhnb).
=> MH = DB và MD = BH (Tính chất hình bình hành).
Ta có: AD = MD + AM.
Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).
=> AM = b - \(\dfrac{1}{2}\)a.
Xét tam giác AHB vuông tại H có:
AB2 = AH2 + BH2 (Định lý Py ta go).
Thay: b2 = AH2 + ( \(\dfrac{1}{2}\)a)2.
<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.
<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).
Xét tam giác MAH vuông tại A (^MAH = 90o) có:
\(MH^2=AM^2+AH^2\) (Định lý Py ta go).
Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.
MH2 = b2 - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.
MH2 = 2b2 - ab.
MH = \(\sqrt{2b^2-ab}\).
Mà MH = BD (cmt).
=> BD = \(\sqrt{2b^2-ab}\).
Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.
cân tại A => goc C = goc B = 38 độ
góc A = 180 - goc C - góc B = 180 - 38 - 38 = 104 độ
Chúc ban hoc tot!