Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm thế này đúng không ạ
a) Xét Δ AHB vàΔ AHC có:
AH chung
AB =AC (vì Δ ABC cân tại A theo gt)
AH ⊥ BC (vì AH là đường cao theo gt)
⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)
Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)
Ta lại có: HD // AC (gt )
⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)
Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)
Từ (*) (**) ⇒AD=DH=BD
c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến Δ ABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )
mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB
⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)
mà ta có AD=DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến Δ ABC tại C (4)
Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
a) Xét Δ AHB vàΔ AHC có:
AH chung
AB =AC (vì Δ ABC cân tại A theo gt)
AH ⊥ BC (vì AH là đường cao theo gt)
⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)
Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)
Ta lại có: HD // AC (gt )
⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)
Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)
Từ (*) (**) ⇒AD=DH=BD
c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến Δ ABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )
mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB
⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)
mà ta có AD=DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến Δ ABC tại C (4)
Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
a) Xét ΔAHB và ΔAHC
Ta có: ∠AHB = ∠AHC = 900 (AH⊥BC)
AB = AC ( ΔABC cân tại A)
AH chung
nên ΔAHB = ΔAHC (cạnh huyền - cạnh góc vuông)
b) Ta có: BH = CH (ΔAHB = ΔAHC)
Mà H ∈ BC
nên H là trung điểm của BC
suy ra BH = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)* 6 = 3cm
Xét ΔAHB vuông tại H (AH⊥BC)
Có: AH2 + BH2 = AB2 (Định lý Py-ta-go)
mà BH = 3cm; AB = 5cm
nên AH2 + 32 = 52
suy ra AH = 4cm
Ta có hai đường trung tuyến BE và CD của ΔABC cắt nhau tại G
nên G là trọng tâm của ΔABC
suy ra AG = \(\frac{2}{3}\)AH
mà AH = 4cm
nên AG = \(\frac{8}{3}\)cm
c) Có ΔABC cân tại A
mà AH là đường cao của ΔABC (AH⊥BC)
nên AH là phân giác của ΔABC
suy ra ∠BAH = ∠CAH
Xét ΔABG và ΔACG
Có AB = AC (ΔABC cân tại A)
∠BAH = ∠CAH (cmt)
AG chung
nên ΔABG = ΔACG (c-g-c)
suy ra ∠ABG = ∠ACG (2 góc tương ứng)
Hình (tự vẽ)
a) ΔABE cân
Xét hai tam giác vuông ABH và EBH có:
\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)
HB là cạnh chung.
Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)
⇒ BA = BE (2 cạnh tương ứng)
⇒ ΔABE cân tại B.
b) ΔABE đều
Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.
c) AED cân
Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)
Xét hai tam giác vuông ADH và EDH có:
AH = EH (cmt)
HD: cạnh chung
Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)
⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)
⇒ ΔAED cân tại D
d) ΔABF cân
Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong) (1)
Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)
Thay: 60o + ABF = 180o
⇒ ABF = 180o - 60o = 120o
Xét ΔABF, ta có:
\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)
Thay: 120o + BFA + 30o = 180o
⇒ BFA = 180 - 120 - 30 = 30 (2)
Từ (1) và (2) suy ra: ΔABF cân tại B.
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
a) Xét ∆ vuông ABC và ∆ vuông AED ta có :
AB = AD (gt)
AC = AD (gt)
=> ∆ABC = ∆AED ( 2 cgv)
=> BD = DE
b) Xét ∆ABD có :
BAC = 90°
=> AD\(\perp\)AE
Mà AB = AD (gt)
=> ∆ABD vuông cân tại A
=> BDC = 45°
Chứng minh tương tự ta có :
BCE = 45°
=> BDC = BCE = 45°
Mà 2 góc này ở vị trí so le trong
=> BD//CE
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AH=8cm
nên CH=6cm
=>BC=12cm
Bạn ơi! Có thể giúp mik luôn câu C đc ko