Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: góc A=30độ => góc ABD =60 độ
Tam giác ABK cân tại B(do AB=BK) có góc B=60độ => tam giác ABK đều
b. Ta có Tam giác ABC cân tại A có AH là đường cao nên AH cũng là đường phân giác của góc A
=> góc BAH=góc CAH=1/2 góc A=15độ
=> góc AHD =90độ - góc CAH = 75độ
Gọi P là giao điểm của AH và BC
Mà góc BHP và góc AHD là 2 góc đối đỉnh nên góc BHP=góc AHD = 75 độ => góc CHP = góc BHP = 75 độ
=> góc CHD = 180 độ - góc AHD - góc CHP = 180độ - 2.75độ = 30 độ
Tam giác CHD vuông tại D có góc CHD= 30độ => CD=1/2 CH (cạnh đối diện với góc 30 độ thì bằng một nửa cạnh huyền)
a, Xét ∆ ABD vuông tại D
➡️Góc ABD = 90° - 30° = 60°
Xét ∆ ABK cân tại B (BA = BK) có góc ABD = 60°
➡️∆ ABK đều (đpcm)
b, Vẽ CK vuông góc với AB
Xét ∆ BHK có góc ABD = 60°
➡️Góc BHK = 90° - 60° = 30°
Vì góc BHK và góc CHD là 2 góc đối đỉnh
➡️Góc BHK = góc CHD = 30°
Xét ∆ vuông CHD có góc CHD = 30°
➡️CH = 2CD (t/c)
T/C nâng cao trong tg vuông: trong một tg vuông, cạnh đối diện với góc 30° sẽ bằng nửa cạnh huyền.
Hok tốt~
a) Xét ΔABHΔABH và ΔHACΔHAC có
AB=AC;ˆBAH=ˆCAH;AH:chungAB=AC;BAH^=CAH^;AH:chung
⇒⇒ ΔABHΔABH = ΔHACΔHAC (cgc)
b) Có BK = AB ⇒ΔABK⇒ΔABK cân tại B
tự kẻ hình
a) xét tam giác BEC và tam giác CDB có
BC chung
BEC=CDB(=90 độ)
ABC=ACB( tam giác ABC cân A)
=> tam giác BEC= tam giác CDB(ch-gnh)
=> BD=CE( hai cạnh tương ứng)
b) từ tam giác BEC= tam giác CDB=> DBC=ECB(hai góc tương ứng)
=> tam giác HBC cân H
c) đặt O là giao điểm của AH với BC
vì AH,BD,CE cùng giao nhau tại H mà BD, CE là đường cao=> AH là đường cao ( 3 đường cao cùng đi qua một điểm)
vì HBC cân H=> HB=HC
xét tam giác HOB và tam giác HOC có
HB=HC(cmt)
HBO=HCO(cmt)
HOB=HOC(=90 độ)
=> tam giác HOB= tam giác HOC(ch-gnh)
=> BO=CO( hai cạnh tương ứng)
=> AH là trung trực của BC
d) xét tam giác CDB và tam giác CDK có
BD=DK(gt)
CDB=CDK(=90 độ)
DC chung
=> tam giác CDB= tam giác CDK(cgc)
=> CBD=CKD( hai cạnh tương ứng)
mà CBD=BCE=> CKD=BCE
a. Xét tam giác ABD và tam giác ACE có:
-AEC=ADB=90 (gt)
-AB=AC (2 cạnh bên tam giác cân ABC)
-A là góc chung
=> tam giác ABD = tam giác ACE (g.c.g) (đpcm)
b.*Vì tam giác ABD = tam giác ACE (câu a)
=> BH=CH (2 cạnh tương ứng)
*Xét tam giác EHB và tam giác DHC có:
-BEH=CDH=90 (gt)
-BH=CH (CM trên)
-EHB=DHC (đối đỉnh)
=> tam giác EHB = tam giác DHC (c.huyền-g.nhọn)
=>EB=DC (2 cạnh tương ứng)
*Ta có: AB=AE+EB
và AC=AD+DC
mà AB=AC (2 cạnh bên tam giác cân ABC)
và EB=DC (CM trên)
=>AE=AD
=> Tam giác ADE cân tại A (đpcm)
c. Vì AE=AD (CM trên)
và HE=HD (CM trên)
=> AH là đường trung trực của ED (đpcm)
d. *Xét tam giác DKC và tam giác DBC có:
-BDC=KDC=90 (gt)
-BD=KD (gt)
-DC là cạnh chung
=>tam giác DKC = tam giác DBC (c.g.c)
=> DBC=DKC (2 góc tương ứng) (1)
*Vì BH=CH (câu b)
=> tam giác HBC cân tại H
=>DBC=ECB (2 góc ở đáy tam giác cân) (2)
*Từ (1) và (2) => ECB=DKC (đpcm)
a: ΔADE vuông cân tại A
=>góc DEA=45 độ
b: góc HEC+góc HCE=45+45=90 độ
=>EH vuông góc BC
c: Xét ΔCBE có
EH,BA là đường cao
EH cắt BA tại D
=>D là trực tâm
=>CD vuông góc BE
d: góc HDA=180-45=135 độ
=>góc BDE=135 độ
a)Theo bài ra ta có BD = AB
=> ABD là tam giác cân
Mặt khác BD là đường cao
=> BDA = 90 độ
=> góc HBA = 180 độ - 30 - 90 = 60 độ
Tam giác cân ABD với góc HBA 60 độ là tam giác đều
b) Gọi I là trực tâm tam giác ABC. Chứng minh CH = 2CH
tren CA lay Q sao cho CH=HQ(Q≠C)
^ICH=60^0
∆CIQ deu ; IC=CQ=2CH
=>IC=2CH