Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. Ta có: góc A=30độ => góc ABD =60 độ
Tam giác ABK cân tại B(do AB=BK) có góc B=60độ => tam giác ABK đều
b. Ta có Tam giác ABC cân tại A có AH là đường cao nên AH cũng là đường phân giác của góc A
=> góc BAH=góc CAH=1/2 góc A=15độ
=> góc AHD =90độ - góc CAH = 75độ
Gọi P là giao điểm của AH và BC
Mà góc BHP và góc AHD là 2 góc đối đỉnh nên góc BHP=góc AHD = 75 độ => góc CHP = góc BHP = 75 độ
=> góc CHD = 180 độ - góc AHD - góc CHP = 180độ - 2.75độ = 30 độ
Tam giác CHD vuông tại D có góc CHD= 30độ => CD=1/2 CH (cạnh đối diện với góc 30 độ thì bằng một nửa cạnh huyền)
a, Xét ∆ ABD vuông tại D
➡️Góc ABD = 90° - 30° = 60°
Xét ∆ ABK cân tại B (BA = BK) có góc ABD = 60°
➡️∆ ABK đều (đpcm)
b, Vẽ CK vuông góc với AB
Xét ∆ BHK có góc ABD = 60°
➡️Góc BHK = 90° - 60° = 30°
Vì góc BHK và góc CHD là 2 góc đối đỉnh
➡️Góc BHK = góc CHD = 30°
Xét ∆ vuông CHD có góc CHD = 30°
➡️CH = 2CD (t/c)
T/C nâng cao trong tg vuông: trong một tg vuông, cạnh đối diện với góc 30° sẽ bằng nửa cạnh huyền.
Hok tốt~

a) Xét ΔABHΔABH và ΔHACΔHAC có
AB=AC;ˆBAH=ˆCAH;AH:chungAB=AC;BAH^=CAH^;AH:chung
⇒⇒ ΔABHΔABH = ΔHACΔHAC (cgc)
b) Có BK = AB ⇒ΔABK⇒ΔABK cân tại B

Bài làm
Gọi giao điểm của BD và AI là O
Xét tam giác AOB và tam giác IOB có:
^AOB = ^IOB = 00°
BO chung
^ABO = ^IBO ( do BD phân giác )
=> ∆AOB = ∆IOB ( g.c.g )
=> AO = OI
=> O là trung điểm của AI.
Mà BD vuông góc với AI tại O
=> BD là trung trực của AI

Bài 1)
a) Trong ∆ cân ABC có AH là trung trực đồng thời là phân giác và trung tuyến
=> BAH = CAH
Xét ∆ ABD và ∆ ACD ta có :
AB = AC (∆ABC cân tại A)
AD chung
BAH = CAH (cmt)
=> ∆ABD = ∆ACD (c.g.c)
=> BD = CD
=> ∆BDC cân tại D
* NOTE : Trong ∆ vuông BDH có DH < BD ( trong tam giác vuông ; cạnh góc vuông luôn luôn nhỏ hơn cạnh huyền )
Mà DH = HG
=> DG < DB
=> DG ko thể = BD và DC
b) Xét ∆ABG và ∆ACG ta có :
AG chung
BAH = CAH (cmt)
AB = AC (cmt)
=> ∆ABG = ∆ACG (c.g.c)(dpcm)
c) Vì AH = 9cm (gt)
Mà AD = 2/3AH
=> AD = 6cm
=> DH = 9 - 6 = 3 cm
Mà AH là trung tuyến BC
=> BH = HC = BC/2 = 4 cm
Áp dụng định lý Py ta go vào ∆ vuông BHD ta có
=> BD = 5 cm
Bài 2) Áp dụng định lý Py ta go vào ∆ vuông ABC ta có :
BC = 10 cm
b) Xét ∆ vuông ABM và ∆ vuông BMC ta có :
BM chung
ABM = CBM ( BM là phân giác)
=> ∆ABM = ∆BMC ( ch - gn )
c) Vì ∆ABM = ∆BMC (cmt)
=> AM = NM
Xét ∆ vuông APM và ∆ MNC ta có :
AM = NM (cmt)
AMP = NMC ( đối đỉnh)
=> ∆APM = ∆MNC ( cgv - gn )
d) Vì ∆ APM = ∆MNC (cmt)
=> PM = MC
=> ∆MPC cân tại M
Mà K là trung điểm PC
=> MK là trung tuyến đồng thời là trung trực và là phân giác ∆PMC
=> MK vuông góc với PC
=> M; K thẳng hàng
Mà BM là phân giác ABC
=> B ; M thẳng hàng
=> B ; M ; K thẳng hàng

Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả
mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng
a)Theo bài ra ta có BD = AB
=> ABD là tam giác cân
Mặt khác BD là đường cao
=> BDA = 90 độ
=> góc HBA = 180 độ - 30 - 90 = 60 độ
Tam giác cân ABD với góc HBA 60 độ là tam giác đều
b) Gọi I là trực tâm tam giác ABC. Chứng minh CH = 2CH
tren CA lay Q sao cho CH=HQ(Q≠C)
^ICH=60^0
∆CIQ deu ; IC=CQ=2CH
=>IC=2CH