K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

AC = AH + HC = 6 + 4 =10 ( cm )

Vì tam giác ABC cân tại A

=> AC = AB = 10 (cm)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

AB^2 = AH^2 + BH^2

=> BH^2 = AB^2 - AH^2

    BH^2 = 10^2 - 6^2 = 100 - 36 = căn 64 = 8

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

   BC^2 = HC^2 + HB^2

            = 4^2 + 8^2 = 16 + 64 =căn 80

Vậy BC = căn 80

25 tháng 1 2018

fdghgfghhjhj

18 tháng 12 2016

A) Xét tam giác ABH và tam giác ADH có :

HB=HD ( giả thiết)

HA ( cạnh chung)

góc DHA=góc BHA=90độ

suy ra tam giác ABH=tam giác ADH ( C-G-C)

B)Xét tam giác EHD và tam giác BHAcó:

HE=HA( GT)

góc AHB=góc DHE(hai góc đối đỉnh )

HD=HB( GT)

vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)

vậy BA=ED( hai cạnh tương ứng)

C)ta gọi giao điểm của ED và AC là I

ta có góc IEA = góc EAB( hai góc tương ứng)

mà hai góc này lại ở

 vị trí sole  trong ở hai đoạn thẳng BA và EI

suy ra :  BAsong song với EI

mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ

vậy EI vuong góc với AC

Vì AH vuông góc với BC mà tam giác ABC cân tại A (gt)

Nên AH vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\)H là trung điểm của BC

\(\Rightarrow BH=\frac{BC}{2}=\frac{10}{2}=5\left(cm\right)\)

Áp dụng định lý Pi-ta-go vào tam giác ABH vuông tại H có:

\(AB^2=AH^2+BH^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)

Hay \(AH^2=12^2-5^2\)

\(\Rightarrow AH^2=144-25\)

\(\Rightarrow AH^2=119\)

\(\Rightarrow AH=\sqrt{119}\)

20 tháng 5 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta ABH\)vuông và \(\Delta ACH\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)

Cạnh AH chung

=> \(\Delta ABH\)vuông = \(\Delta ACH\)vuông (cạnh huyền - góc nhọn)

b/ \(\Delta ABH\)vuông tại A => AB2 =  AH2 + HB2 (định lý Pitago)

=> AB2 = 42 + 32

=> AB2 = 16 + 9

=> AB2 = 25

=> AB = \(\sqrt{25}\)= 5 (cm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AH cũng là đường trung tuyến

Ta lại có: H là trung điểm của AC

và HM // AC

=> M là trung điểm của AB

và G là giao điểm của hai đường trung tuyến AH và CG của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

=> \(AG=\frac{2}{3}AH\)(tính chất trọng tâm của tam giác)

=> \(AG=\frac{2}{3}.4=\frac{8}{3}\)(cm)

20 tháng 5 2018

cảm ơn bn nhưng mình cần câu d thui

7 tháng 8 2020

Đề phải sửa là Vuông tại A

a/ \(BC^2=AB^2+AC^2=15^2+20^2=625=25^2\Rightarrow BC=25cm\)

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)

\(HC=BC-BH=25-9=16cm\)

b/ Xét tg vuông ABH có \(\widehat{BAH}+\widehat{ABC}=90^o\) (1)

Xét tg vuông ABC có \(\widehat{ACH}+\widehat{ABC}=90^o\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ACH}=\widehat{BAH}\)

7 tháng 8 2020

Sửa đề tam giác ABC vuông tại A 

A B C H 12 15 20

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H có 

BH2 + AH2 = AB2

=> BH2 + 122 = 152

=> BH2 = 152 - 122

=> BH2 = 81

=> BH = 9

Áp dụng định lý Py-ta-go vào tam giác ACH vuông tại H có

AH2 + HC2 = AC2

=> 122 + HC2 = 202

=> HC2 = 202 - 122

=> HC2 = 256

=> HC = 16

17 tháng 1 2019

Vì \(\Delta ABC\)cân tại A 

\(\Rightarrow AB=AC=12cm\)và \(\widehat{B}=\widehat{C}\)

Ta có: \(\Delta ABH\)vuông tại H

\(\Rightarrow\widehat{BAH}+\widehat{B}=90^o\)(1)

Ta lại có: \(\Delta ACH\)vuông tại H

\(\Rightarrow\widehat{CAH}+\widehat{C}=90^o\)(2)

Từ (1) và (2) \(\Rightarrow\widehat{BAH}+\widehat{B}=\widehat{CAH}+\widehat{C}\)

mà \(\widehat{B}=\widehat{C}\)\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

Xét \(\Delta BAH\)và \(\Delta CAH\)ta có: +) \(\widehat{BAH}=\widehat{CAH}\)( cmt)

                                                          +) \(AB=AC\)

                                                          +) \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta BAH=\Delta CAH\left(g.c.g\right)\)

\(\Rightarrow BH=HC\)( 2 cạnh tương ứng )

mà \(BC=10cm\)

\(\Rightarrow BH=HC=5cm\)

Ta có \(\Delta BAH\)vuông tại H nên theo định lý Py-ta-go ta có:

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2+5^2=12^2\)

\(\Rightarrow AH^2=12^2-5^2=144-25=119\)

\(\Rightarrow AH=\pm\sqrt{119}\)

mà \(AH>0\)\(\Rightarrow AH=\sqrt{119}\)

Vậy \(AH=\sqrt{119}\)