K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

a)ta có tam giác ABC cân tại A suy ra AB=AC

suy ra ACB=ABC suy ra 1/2 ACB=1/2ABCsuy ra DBC=ECB=ABD=ECA

xét tam giác DBC và tam giác ECB có

BC(chung)

ABC=ACB

ABC=ACB(cmt)

suy ra tam giác DBC =ECB(g.c.g)

suy ra BD=CE

b)

xét tam giác ABD và tam giác ACE có:

AB=AC

A(chung)

ABD=ECD(theo câu a)

suy ra tam giác ABD=ACE(g.c.g)

suy ra AE=AD suy ra tam giác AED cân tại A suy ra AED=(180-A)/2(1)

ta có tam giác ABC cân tại A suy ra ABC=(180-A)/2(2)

từ (1)(2) suy ra AED=ABC

suy ra ED//BC(2 góc đồng vị)

14 tháng 2 2016

a) Xét tam giác BEC và tam giác CDB ta có

BC:cạnh chung

góc B=góc C(tam giac ABC can tai A)

góc ECB=DBC(ban tu hieu nha lam bieng viet ra quá)

Do đó hai tam giac bang nhau(góc-canh-góc)

=>>>>>>BD=CE

b)Ta có AE=AD(AE=AB-BE

                           AD=AC-CD mà BE=CD hai tam giac moi chung minh bang nhau,AB=AC tam giac ABC cân tại A)

  =>>>>Tam giác AED cân tại A

=>góc E = gocD

Ta có A+B+C=180(tong ba goc cua tam giac ABC,mà B=C)

=>2B+A=180(1)

Tổng ba goc cua tam giac ADE 

A+AED+ADE=180(mà AED=ADE)

=>>>2AED+A=180(2)

Tu72 1   2   =>>>>>>> AED=B

mà hai goc o vi tri dong vị

=====>>>>>>>>>>>>ED//BC duoc chua ban ung hộ mình nhé

                                                           

                       

14 tháng 2 2016

moi hok lop 6

24 tháng 3 2016

mình cũng z

30 tháng 1 2022

Answer:

A C B D E

a. Tam giác ABC cân tại A

=> Góc ABC = góc ACB

=> BD là tia phân giác của góc ABC

\(\Rightarrow\widehat{BDC}=\frac{\widehat{ABC}}{2}\)

CE là tia phân giác của góc ACB

\(\Rightarrow\widehat{BCE}=\frac{\widehat{ACB}}{2}\)

=> Góc BDC = góc BCE

Xét tam giác BCE và tam giác CBD:

BC cạnh chung

Góc CBE = góc BCD

Góc BCE = góc CBD

=> Tam giác BCE = tam giác CBD (g.c.g)

=> BD = CE

b. Có: \(\frac{BE}{AB}=\frac{DC}{AC}\Rightarrow ED//BC\)

c. Có: \(\frac{AD}{DC}=\frac{AB}{BC}\)

\(\Rightarrow\frac{AD}{DC}=\frac{6}{4}=\frac{3}{2}\)

\(\Rightarrow AD=\frac{3}{2}DC\)

Mà AD + DC = AC

      \(\frac{3}{2}DC+DC=6\)

\(\Rightarrow DC=2,4cm\)

\(\Rightarrow AD=3,6cm\)

Có \(\frac{ED}{BC}=\frac{AD}{AC}\)

\(\Rightarrow ED=\frac{BC.AD}{AC}=\frac{4.3,6}{6}=2,4cm\)

a) Vì ∆ABC cân tại A 

=> AB = AC 

=> ABC = ACB

Vì BD là phân giác ABC 

=> ABD = CBD = \(\frac{1}{2}ABC\)

Vì CE là phân giác ACB 

=> ACE = BCE = \(\frac{1}{2}ACB\) 

=> ABD = CBD = ACE = BCE 

Xét ∆ABD và ∆ACE có : 

ABD = ACE (cmt)

A chung 

AB = AC (cmt)

=> ∆ABD = ∆ACE (g.c.g)

b) Vì ∆ABD = ∆ACE (cmt)

=> AE = AD 

=> ∆ADE cân tại A 

=> AED = \(\frac{180°-A}{2}\) 

Vì ∆ABC cân tại A 

=> ABC  = \(\frac{180°-A}{2}\)

=> ABC = ADE 

Mà 2 góc này ở vị trí đồng vị 

=> ED//BC 

=> EDCB là hình thang 

Mà ABC = ACB (cmt)

=> EDCB là hình thang cân 

=> EB = DC

Vì ED//BC

=> DEC = ECB ( so le trong) 

Mà ACE = BCE (CE là phân giác) 

=> DEC = ACE 

=> ∆DEC cân tại D 

=> ED = DC 

Mà EB = DC (cmt)

=> ED = EB = DC

c) Vì ABC = \(\frac{180°-A}{2}=\:\frac{180°-50°}{2}\)= 65° 

Vì EDCB là hình thang cân 

=> EBC = DCB = 65° 

Mà ED//BC 

=> DEB + EBC = 180° ( trong cùng phía) 

=> DEB = 180° - 65° = 115° 

Mà EDCB là hình thang cân 

=> DEB = EDC = 115° 

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

11 tháng 10 2017

\(\widehat{A}=\widehat{B}=65\)                                      

11 tháng 10 2017

1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ                                                                                                        b) vì AD=AE --> tam giác ADE cân tại A.                                                                                                                                                              mà gốc A= 50 độ --> góc D = góc E= 65 độ .    --> góc D= Góc B ( vì cùng bằng 65 độ )  mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC                                                                                                                                                                             2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2)    và BD = AB - AD  (3) , EC= AC - AE (4)                                                               Từ (1) (2) (3) (4)  --> BD= EC                                                                                                                                                                       b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB                                                                                                  xét tam giác DBC và tan giác ECB có :                                                                                                                                                             +)  DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung                                                                                                            nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB                                                                 --> tam giác OBC cân tại O                                                                                                                                               chứng minh DE// BC như bài 1  --> ODE = OED --> tam giác ODE cân tại O                                                                                                         ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à )                                                                                                                3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ   mà ABC = 60 đôh ( gt)  --> ACB = 30 độ                                     ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ   makf ACB = 30 độ --> ACx = 60 độ  (1)                                              và AC = AE (gt)   (2) từ (1) và (2) --> tam giavc ACE là tam giác đều                                                                                                           b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ )                                                                                                               tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ                                                                 vì tam giác ACE là  tam giác đều -- EAC = 60 độ                                                                                                                                              ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng