K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2021

a. Ta có : \(\widehat{B}\)=30 MÀ ΔABC CÂN TẠI A

\(\widehat{C}\)=30

MÀ \(\widehat{A}+\widehat{B}+\widehat{C}\)=180

\(\widehat{A}\) + 30+30=180

\(\widehat{A}\)=180-30-30

\(\widehat{A}\)=120

xÉT ΔAHB vuông tại H, ΔAHC vuông tại H

CÓ : AB = AC (TAM GIÁC ABC CÂN TẠI A)

\(\widehat{B}=\widehat{C}\)(TAM GIÁC ABC CÂN TẠI A)

⇒ΔAHB = ΔAHC (C.HUYỀN-G.NHỌN)

\(\widehat{BAH}=\widehat{CAH}\)

C.TRONG TAM GIÁC AHC VUÔNG TẠI H 

\(AC^2=HC^2+AH^2\)

\(AC^2\)=\(4^2\)+\(3^2\)

\(AC^2\)=16+9 

AC=\(\sqrt{25}\)=5CM

D.XÉT ΔAHE VUÔNG TẠI E, ΔAHF VUÔNG TẠI F 

CÓ: AH : CẠNH HUYỀN CHUNG

\(\widehat{BAH}=\widehat{CAH}\) (ΔAHB = ΔAHC)

⇒ΔAHE=ΔAHF( C.HUYỀN-G.NHỌN)

⇒HE=HF (2 CẠNH TƯƠNG ỨNG)

b) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

b: BH=CH=BC/2=4(cm)

nên AH=3(cm)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

hay ΔHDE cân tại H

25 tháng 12 2022

bạn ơi, cho mình xem hình vẽ với

 

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

18 tháng 2 2017

Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung 
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC 
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
 

1 tháng 5 2019

A B C D E H

a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:

\(AHchung\)

AB = AC 

\(\widehat{AHB}=\widehat{AHC}\)

\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)

=> BH = HC ( 2 cạnh tương ứng )

b,Do BC = 8cm => BH = 4cm 

Áp dụng định lý Py ta go vào tam giác vuông ABH có :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)

c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :

\(\widehat{ABH}=\widehat{ACH}\)

BH = HC

\(\widehat{BDH}=\widehat{CEH}\)

\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H

cho mình 1 tym nha

17 tháng 3 2020

a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)

Có: AB=AC(gt)

Góc ABH = góc ACH(gt)

=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)

=>HB=HC (2 cạnh tương ứng)

=>Góc CAH = góc BAH( 2 góc tương ứng)

b/ Ta có :HB=HC( cmt)

=> H trung điểm BC

Ta có: HB=HC=BC/2=8/2=4 (cm)

Xét tam giác ABH vuông tại H

Có AB^2= AH^2+HB^2 (pytago)

=>AH^2= AB^2-HB^2

AH^2= 5^2-4^2

AH^2=25-16

AH^2=9

AH= căng 9

=> AH= 3cm

Vậy AH=3cm

c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)

Có: AH chung

Góc DAH= góc EAH ( tam giác ABH= tam giác ACH)

=> tam giác ADH= tam giác AEH ( cạnh huyền - góc nhọn)

=> AD=AE ( 2 cạnh tương ứng)

=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)

Xét tam giác ABC cân tại A(gt)

Có: Góc B= (180 độ - góc A)/2 (định lí)

Xét tam giác ADE cân tại A (cmt)

Có: Góc D= (180 độ - góc A)/2 (định lí)

=> Góc B= Góc D ( =(180 độ - góc A)/2)

=> DE//BC ( 2 góc đồng vị bằng nhau)

1 tháng 2 2016

:
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
 HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
 AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
 DH =EH 
 dpcm

1 tháng 2 2016

Bài 3 :
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
 HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
 AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
 DH =EH 
 dpcm

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC

b: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H