Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, MK _|_ BH (gt)
AC _|_ BH (gt)
MK; AC phân biệt
=> MK // AC (tc)
=> góc ACB = góc KMB (đồng vị)
tam giác ABC cân tại A (gt) => góc ACB = góc ABC (tc)
=> góc ABC = góc KMB
xét tam giác BKM và tam giác MDB có : BM chung
góc BDM = góc MKB = 90 (gt)
=> tam giác BKM = tam giác MDB (ch - gn)
b, KH _|_ AC (gt)
ME _|_ AC (gt)
KH; ME phân biệt
=> KH // ME (tc)
=> góc KHM = góc HME (slt)
xét tam giác KHM và tam giác EMH có : HM chung
góc MKH = góc HEM = 90
=> tam giác KHM = tam giác EMH (ch - gn)
c, tam giác KHM = tam giác EMH (Câu b) => ME = KH (đn)
tam giác BKM = tam giác MDB (câu a) => MD = BK (đn)
=> MD + ME = BK + KH
mà BK + KH = BH
=> MD + ME = BH
Cm: a) Ta có: AC \(\perp\)HK (gt)
MK \(\perp\)HK (gt)
=> AC // HM => \(\widehat{BMK}=\widehat{C}\) (đồng vị)
mà \(\widehat{C}=\widehat{B}\) (vì t/giác ABC cân tại A)
=> \(\widehat{B}=\widehat{KMB}\)
Xét t/giác BKM và t/giác MDB
có: \(\widehat{BKM}=\widehat{BDM}=90^0\) (gt)
BM : chung
\(\widehat{BMK}=\widehat{B}\) (cmt)
=> t/giác BKM = t/giác MDB
b) Xét t/giác KHM và t/giác EHM
có: \(\widehat{MKH}=\widehat{MEH}=90^0\) (gt)
HM : chung
\(\widehat{KMH}=\widehat{MHE}\) (so le trong vì AC // KM)
=> t/giác KHM = t/giác EHM (ch - gn)
c) Ta có: BH = BK + KH
mà BK = DM (vì t/giác BKM = t/giác MDB) ; ME = KH (vì t/giác KHM = t/giác EHM)
=> DM + ME = BH (Đpcm)
a. Xét tam giác ABM và tam giác ACM có :
AB = AC ( vì tam giác ABC cân tại A )
AM chung
BM = MC ( vì M là trung điểm của BC)
=> tam giác ABM= tam giác ACM ( c-c-c)
b. Xét tam giác BHM và tam giác CKM ta có :
BM = MC (gt)
Góc BHM = góc CKM ( = 90 độ )
Góc B = Góc C ( vì tam giác ABC cân tại A)
=> tam giác BHM = tam giác CKM ( ch-gn)
=> BH = CK ( hai cạnh tương ứng)
a, Xét Δ ABM và Δ ACM, có :
AB = AC (Δ ABC cân tại A)
MB = MC (M là trung điểm BC)
\(\widehat{ABM}=\widehat{ACM}\) (Δ ABC cân tại A)
=> Δ ABM = Δ ACM (c.g.c)
b, Xét Δ MHB và Δ MKC, có :
\(\widehat{MHB}=\widehat{MKC}=90^o\)
\(\widehat{HBM}=\widehat{KCM}\) (cmt)
\(\widehat{HMB}=\widehat{KMC}\) (đối đỉnh)
=> Δ MHB = Δ MKC (g.g.g)
=> BH = CK
`a)`
Xét `Delta ABM` và `Delta ACM` có :
`{:(AB=AC(GT)),(AM-chung),(BM=CM(M là tđ BC)):}}`
`=>Delta ABM=Delta ACM(c.c.c)(đpcm)`
`b)`
`Delta ABM=Delta ACM(cmt)=>hat(A_1)=hat(A_2)`
mà `AM` nằm giữa `AB` và `AC`
nên `AM` là p/g của `hat(BAC)(đpcm)`
`c)`
Xét `Delta ADM` và `Delta AEM` có :
`{:(hat(ADM)=hat(AEM)(=90^)),(AM-chung),(hat(A_1)=hat(A_2)(cmt)):}}`
`=>Delta ADM=Delta AEM(ch-gn)`
`=>AD=AE` ( 2 cạnh t/ứng )
`=>Delta ADE` cân tại `A(đpcm)`