Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
Xét tam giác ABM và tam giác ACM có:
BM = MC ( vì M là trung điểm của BC )
AM là cạnh chung
AB = AC ( gt )
=> tam giác ABM = tam giác ACM ( c.c.c )
b) Xét tam giác AEH và tam giác CEM có:
EH = EM (gt)
góc AEM = góc MEC (2 góc đối đỉnh )
AE = EC ( vì E là trung điểm của AC )
=> tam giác AEK = tam giác CEM (c.g.c)
c) Câu này giải thích nhiều mà tớ không có thời gian nên không ghi ra được. Tích hay không tùy cậu
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAK}=\widehat{EAK}\)
=>AK là phân giác của góc DAE
Xét ΔADE có
AK là đường cao
AK là đường phân giác
Do đó: ΔADE cân tại A
c: Xét ΔBAC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
mà F\(\in\)DE và M\(\in\)BC
nên EF//MC
Xét tứ giác EFCM có
EF//CM
EF=CM
Do đó: EFCM là hình bình hành
=>EC cắt FM tại trung điểm của mỗi đường
mà H là trung điểm của EC
nên H là trung điểm của FM
=>F,H,M thẳng hàng
a) Xét △MIA và △BIH có
MI=BI( giả thiết)
góc MIA =góc BIH(2 góc đối đỉnh)
IA=IH(Vì I là trung điểm của AH)
=> △MIA = △BIH(c-g-c)
=>góc IMA=góc IBH (2 góc tương ứng)
hay góc BMA=góc MBH mà 2 góc này là 2 góc so le trong của đường thẳng MB cắt MA và BH
=>MA//BH
bạn tự làm câu b,c nhé
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác của \(\widehat{BAC}\))
AM chung
Do đó: ΔABM=ΔACM(c-g-c)
b) Sửa đề: EM=AC
Ta có: ΔABM=ΔACM(cmt)
nên \(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
hay AM\(\perp\)BC
Xét tứ giác AMCE có
I là trung điểm của đường chéo AC(gt)
I là trung điểm của đường chéo EM(gt)
Do đó: AMCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AMCE có \(\widehat{AMC}=90^0\)(cmt)
nên AMCE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AC=ME(Hai đường chéo)