Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC ta có
M,N là trung điểm AB,AC (gt)
=> MN là đường trung bình tam giác ABC
=> MN//BC . MN=1/2 BC
-> BMNC là hình thang
Xét hình thang BMNC ta có
góc B= Góc C( tam giác ABC cân tại A)
-> BMNC là hình thang cân
b) Xét tam giác ABC cân tại A ta có
AH là đường cao (gt)
-> AH là đường trung tuyến
-> H là trung diểm BC
cm HN là đường trung bình tam giác ABC
-> HN // AB. HN=1/2 AB
mà AM =1/2 AB ( M là trung điểm AB)
nên HN=AM
Xét tứ giác AMHN ta có
AM// HN ( HN//AB, M thuộc AB)
AN=HN (cmt)
-> tứ giác AMHN là hình hình hành
mà AH là tia phấn giác góc NAM ( AH là đường cao tam giác ABC cân tại A)
nên hbh AMHN là h thoi
c) Xét tứ giác AHCK ta có
AC và HK cắt nhau tại N
N là trung diểm AC (gt)
N là trung điểm HK ( K la điểm dx của H qua N)
-> AHCK là hình bình hành
mà góc AHC =90 ( AH là đường cao tam giác ABC)
nên hbh AHCK là hình chữ nhật
a, Xét tứ giác AHCK có:
I là trung điểm KH
I là trung điểm AC
Nên tứ giác AHCK là hình bình hành
Lại có: góc H=90 độ do AH là đường cao của tam giác ABC
Vậy tứ giác AHCK là hình chữ nhật
b, Xét tứ giác ABHK có:
AK//CH do H thuộc CB và CH//AK
KA=HB do AK=CH mà AH là đường cao của tam giác cân nên H là trung điểm BC và KA=CH
Vậy tứ giác ABHK là hình bình hành
Câu c Δabc vuông cân thì ahck là hv ( câu này neeus sai thông cmr mk nha câu c này mk làm đại)
4) Gọi D là trung điểm của CK.
ΔABC cân ở A có AH là đường cao, đồng thời là đường trung tuyến
⇒ CH ⊥ FH; H là trung điểm của BC
⇒ DH là đường trung bình của ΔBCK ⇒ DH // BK.
I là trung điểm của HK ⇒ DI là đường trung bình của ΔCHK
⇒ DI // CH ⇒ DI ⊥ FH.
K là hình chiếu của H lên CF ⇒ HI ⊥ DF
⇒ I là trực tâm của ΔDFH ⇒ FI ⊥ DH ⇒ FI ⊥ BK.
a) diện tích của tam giác ABC là SABC=1/2.AH.BC=1/2.16.12=96 tam giác ABC có M là trung điểm AB N là trung điểm AC nên MN là đường trung bình của tam giác ABC => MN=1/2BC=1/2.12=6 vậy MN=6
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
c: Xét tứ giác ADCB có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ADCB là hình bình hành
A B C H M N K tự cm nha !
tại sao AM, AN là trung điểm của AB, AC được