Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
a) Vì AI^2=AD.AE nên để chứng minh AI^2=DE.AK ta chứng minh AD.AE=DE.AK bằng cách chứng minh hai tam giác ADE và KAE đồng dạng.
b) Trong tam giác vuông AIK có sinAIK = AK/AI = AI/DE ( theo đẳng thức ở câu a)
Mà AI là đường trung tuyến ứng với cạnh huyền nên AI = DE/2
Do đó sinAIK = 1/2 suy ra góc AIK bằng 30 độ.
A B C H D E
ta co \(BH+CH=BC\Rightarrow BC=6\)
lai co \(AH^2=BH\cdot CH\Rightarrow AH=\sqrt{8}\)
mat khac \(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=6\sqrt{8}\)
b,phan1 cos^3 BH la j
2 \(AH^2=BH\cdot CH\Rightarrow AH^4=BH^2\cdot CH^2\)
ma \(BH^2=BD\cdot AB,HC^2=EC\cdot AC\)
\(\Rightarrow AH^4=BD\cdot AB\cdot EC\cdot AC\)
nhung\(AH\cdot BC=AB\cdot AC\) nên ta có \(AH^4=BD\cdot EC\cdot AH\cdot BC\Rightarrow AH^3=DB\cdot EC\cdot BC\)