K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AHBD có

M là trung điểm chung của AB và HD

góc AHB=90 độ

=>AHBD là hình chữ nhật

Xét tứ giác AHCE có

N là trung điểm chung của AC và HE

góc AHC=90 độ

=>AHCE là hình chữ nhật

AE//CH

=>AE//BH

mà AD//BH

nên A,D,E thẳng hàng

mà DA=AE

nên A là trung điểm của DE

Xét tứ giác BDEC có

DE//BC

DE=BC

góc DBC=90 độ

=>BDEC là hình chữ nhật

b: Xét tứ giác ABHE có

AE//HB

AE=HB

=>ABHE là hình bình hành

=>AH cắt BE tại trung điểm của mỗi đường(1)

Xét tứ giác ADHC có

AD//HC

AD=HC

=>ADHC là hbh

=>AH cắt CD tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra BE cắt CD tại trung điểm của AH

c: Xét ΔHDE có

HA vừa là đường cao, vừa là trung tuyến

=>ΔHDE cân tại H

=>HD=HE

BDEC là hcn

=>BE=CD

28 tháng 12 2023

a: Xét tứ giác AHCE có

I là trung điểm chung của AC và HE

góc AHC=90 độ

=>AHCE là hình chữ nhật

b: Xét ΔAHC có

HI,AM là trung tuyến

HI cắt AM tại G

=>G là trọng tâm

=>HG=2/3HI=2/3*1/2*HE=1/3HE

Xét ΔCAE có

AN,EI là trung tuyến

AN cắt EI tại K

=>K là trọng tâm

=>EK=2/3EI=1/3EH

HG+GK+KE=HE

=>GK=HE-1/3HE-1/3HE=1/3HE

=>HG=GK=KE

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: góc MED=góc MEH+góc DEH

=góc MHE+góc DAH

=góc HBA+góc HAB=90 độ

13 tháng 10 2023

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

\(\widehat{BAC}=90^0\)

Do đó: ABDC là hình chữ nhật

b: Xét ΔADE có

M,H lần lượt là trung điểm của AD,AE

=>MH là đường trung bình

=>MH//DE

=>DE vuông góc AE

Xét tứ giác ABED có \(\widehat{ABD}=\widehat{AED}=90^0\)

=>ABED là tứ giác nội tiếp

=>\(\widehat{BDE}=\widehat{EAB}\)

=>\(\widehat{BDE}=\widehat{HAB}=\widehat{C}\)

=>\(\widehat{BDE}=\widehat{C}\)

mà \(\widehat{ACB}=\widehat{ADB}\)

nên \(\widehat{BDE}=\widehat{ADB}\)

=>DB là phân giác của \(\widehat{ADE}\)

11 tháng 12 2023

a: Xét tứ giác AHCE có

D là trung điểm chung của AC và HE

=>AHCE là hình bình hành

Hình bình hành AHCE có \(\widehat{AHC}=90^0\)

nên AHCE là hình chữ nhật

b: AHCE là hình bình hành

=>AE//CH

mà H\(\in\)CI

nên AE//HI

Xét tứ giác AEHI có

AE//HI

AI//HE

Do đó: AEHI là hình bình hành

c: Xét ΔCAK có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAK cân tại C

Ta có: ΔCAK cân tại C

mà CB là đường cao

nên CB là phân giác của \(\widehat{ACK}\)

20 tháng 1 2017

sao khó vậy

20 tháng 1 2017

mk học nhà cô, cô cho zậy đó

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.