Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: \(\widehat{ABC}=\dfrac{180^0-30^0}{2}=75^0\)
c: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
Suy ra: AH//CE
b) Xét ΔADH và ΔCDE có
Góc ADH = Góc EDC ( đối đỉnh )
D là tđ của HE => HD=ED
D là tđ của AC => AD=DC
=>ΔADH = ΔCDE (cgc)
=> góc DAH = góc ECD ( 2 góc tương ứng )
mà 2 góc trên ở vị trí so le trong
=>HA// EC
Xét ΔAHC có
F là tđ của AH => CF là trung tuyến
D là tđ của AC => HD là trung tuyến
mà CF giao vs HD tại Q => Q là trọng tâm
=> HQ=\(\dfrac{2}{3}\)HD
mà HD=DE (cmt)
=>HQ=\(\dfrac{HD+DE}{3}\)=\(\dfrac{1}{3}HE\)
thế là xong câu b rùi nhé còn còn a thì dễ r bạn tự làm đc
a, vì △ABC cân tại A nên tia phân giác AH vừa là trung tuyến ,vừa là đường cao => AHB = 900
△ABH = △ ACH (c.c.c)
ta có: BAC + ABC =900 (mà BAC = 300)
=> ABC=600
b, vì D là trung điểm của AC và HE nên AECH là hình chữ nhật => AH//CE
trong tam giác AHC có F là trung điểm AH; D là trung điểm của AC
=> Q là trọng tâm của tam giác AHC => \(\frac{HQ}{HD}=\frac{2}{3}\)mà \(HD=\frac{1}{2}HE\)
=> \(\frac{HQ}{HE}=\frac{2}{3X\frac{1}{2}}=\frac{1}{3}\)
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
a, CM tam giác ACH = tam giác KCH
Xét tam giác ACH và tam giác KCH, có:
- AH = KH (H là trung điểm AK)
- góc AHC = góc KHC = 90 độ
- cạnh HC chung
=> tam giác ACH = tam giác KCH (đpcm)
b, Gọi E là trung điểm của BC. Trên tia đối của tía EA lấy điểm D sao cho AE=DE. CM: BD song song với AC
Xét tam giác AEC và tam giác DEB, có:
- AE = DE (giả thiết)
- BE = CE (E là trung điểm BC)
- góc AEC = góc DEB (2 góc đối nhau)
=> tam giác AEC = tam giác DEB
=> góc EAC = góc EDB, góc ECA = góc EBD (góc tương ứng của 2 tam giác bằng nhau)
=> DB // AC (so le trong) (đpcm)
c, EB là phân giác của góc AEK
Xét tam giác EHA và tam giác EHK, có:
- EH chung
- góc EHA = góc EHK = 90 độ
- HA = HK (H là trung điểm AK)
=> tam giác EHA = tam giác EHK
=> EA = EK => tam giác EAK cân tại E
mà H là trung điểm AK
=> EH là trung tuyến, trung tực, phân giác của tam giác cân EAK
Ta có EH là phân giác của góc AEK
mà B,H,E thẳng hàng
=> EB là phân giác của góc AEK (đpcm)
d, Gọi F là trung điểm của KD. I là giao điểm BD và KC. CM: A,F,I thẳng hàng
(chưa nghĩ ra)
Bài làm thì dài lắm nên mik nói qua thôi
Bài 1
a) Vì AB=AC => tam giác ABC cân tại A
=>AH là đường trung tuyến ứng với BC mà trong tam giác cân đường trung tuyến cũng chính là đường phân giác và đường trung trực nên =>đpcm
b)Vì HK=HA ;BH=CH và AH vuông góc với BC nên ABKC là hình thoi(tứ giác có 2 đường chéo cắt nhau ở trung điểm mỗi đường và vuông góc với nhau)
=>AB song song với CK (tính chất 2 cạnh đối của hình thoi)
mai mik thi rồi mik cần gấp lắm giúp mik nha
a) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))
AH chung
Do đó: ΔABH=ΔACH(c-g-c)