K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

Chọn đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp là trung điểm cạnh huyền BC, bán kính là R = BC/2

 

Theo định lý Pytago ta có Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án nên bán kính R = 25/2

31 tháng 7 2019

chúng cơm chúng à

18 tháng 2 2017

O A B C D K

Kẽ OA cắt đường tròn tại D cắt BC tại K

Ta có OA = OB = OD = R

\(\Rightarrow\)\(\Delta ABD\) vuông tại D

\(\Rightarrow BD=\sqrt{OD^2-AB^2}=\sqrt{10^2-8^2}=6\)

Ta có OK là đường trung trực của BC nên \(\hept{\begin{cases}OK⊥BC\\BK=CK\end{cases}}\)

Ta lại có: \(S_{\Delta ABD}=\frac{1}{2}AB.BD=\frac{1}{2}AD.BK\)

\(\Rightarrow BK=\frac{AB.BD}{AD}=\frac{8.6}{10}=4,8\)

\(\Rightarrow BC=2BK=4,8.2=9,6\)

18 tháng 2 2017

Viết nhầm tùm lum hết. Do không thấy cái hình. Mà thôi nhìn hình sửa hộ luôn  nhé

15 tháng 8 2019

A B C D 4 6 H O

Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC 

Vì tam giác ABC cân tại A nên AHlà đường trung trực của BC . Nên  AD là đường trung trực của BC . 

Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC 

Tam giác ACD nội tiếp trong (O )  có AD là đường khính suy ra \(\widehat{ACD=90}\)độ 

Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :

\(CH^2=HA.HD\)

\(\Rightarrow\)\(HD=\frac{CH^2}{HA}=\frac{\left(\frac{BC}{2}\right)^2}{HA}=\frac{\left(\frac{12}{2}^2\right)}{4}=\frac{6^2}{4}=9cm\)

Ta có \(AD=AH+HD=4+9=13\left(cm\right)\)

Vậy bán kính của đường tròn (O )  là :

 \(R=\frac{AD}{2}=\frac{13}{2}=6,5\left(cm\right)\)

Chúc bạn học tốt !!!

17 tháng 8 2016

(Hình)

Diện tích tam giác ABC là:

SABC = 1/2 . AH . BC = 1/2 . 4 . 12 = 24 (cm2)

Vì tam giác ABC cân tại A nên đường cao AH là trung tuyến BC

Nên : BH= HC= 1/2. BC= 1/2 . 12 = 6 (cm)

Trong tam giác AHB:

Áp dụng ĐL pi-ta-go:

 AB2 = AH2 + BH2

AB2 = 42 + 62

AB= \(2\sqrt{13}\) (cm)

Vì tam giác ABC cân tại A nên : AB = AC = \(2\sqrt{13}\) (cm)

Ta có : SABC =\(\frac{AB\cdot AC\cdot BC}{4R}\)   (R là bán kính đường tòn ngoại tiếp tam giác ABC)

<=> \(24=\frac{2\sqrt{13}.2\sqrt{13}.12}{4R}\)

<=> R= \(\frac{13}{2}\) (cm)

OK