Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
CB chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: Xét ΔHBC có góc HCB=góc HBC
nên ΔHBC cân tại H
c: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH làphân giác của góc BAC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
=>AD=AE
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
=>BEDC là hình thang
mà BD=CE
nên BEDC là hình thang cân
b: góc ABD+góc DBC=góc ABC
góc ACE+góc ECB=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc DBC=góc ECB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
Bài này essy luôn
a) Xét tam giác BEA và tam giác CDA
Có: \(\widehat{A}\)chung
AB=BC (gt)
\(\widehat{BEA}=\widehat{CDA}=90^o\)
=> Tam giác BEA = tam giác CDA (g.c.g)
=> BE=CD
b) Vì tam giác BEA = tam giác CDA (cmt)
=> \(\widehat{ABE}=\widehat{ACD}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
=> \(\widehat{HBC}=\widehat{HCB}\)
=> Tam giác HBC cân tại H
c) Ta có: BE vuông góc AC
CD vuông góc AB
=> H là trực tâm
=> AH vuông góc BC tại S
mà tam giác ABC cân tại A
=> AH vừa là đường cao vừa là đường phân giác
=> AH là tia phân giác góc BAC