Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hinh thi tu ve nka. Minh chi lam thoi.
a. Xet 2 tam giac vuog: HAB va KAC co:
AB=AC ( ABC can tai A)
A chung
=> HAB=KAC ( cah huyen-goc nhon )
=> AH=AK (2 cah tuog ung)
b. Ta co: KIB=HIC ( doi.d )
Trog tam giac KIB co: KIB+IKB+KBI=180 ( dinh.l)
Trong tam giac HIC co: HIC+IHC+HCI=180 (dinh.l)
Ma: IKB=IHC (=90)
KIB=HIC ( CMT )
=> KBI = HCI
Mat khac, ta co: AK+KB=AB ; AH+HC=AC
Ma: AK=AH(CMT)
AB=AC ( ABC can tai A)
=> KB=HC
Xet 2 tam giac vuog: KIB va HIC co:
KB=HC (CMT)
KBI=HCI( CMT)
Suy ra: KIB=HIC ( cah huyen goc nhon )
=> KI = HI ( 2 cah tuog ung)
Ta thay HB cat AI tai I => AI nam giua AB va AC (1)
Xet 2 tam giac vuog: KIA va HIA co:
AI chug
KI=HI ( CMT )
Suy ra: KIA=HIA ( cah huyen-cah goc vuog)
=> KAI=HAI (2 cah tuog ug) (2)
Tu (1) va (2) suy ra:
AI la phan giac cua goc A ( BAC )
![](https://rs.olm.vn/images/avt/0.png?1311)
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔAHB và ΔAKC có:
AHB = AKC (= 90o)
AB = AC (ΔABC cân tại A)
BAC: chung
=> ΔAHB = ΔAKC (ch-gn)
=> AH = AK (2 cạnh tương ứng)
b) Xét ΔAIK và ΔAIH có:
AKI = AHI (= 90o)
AI: chung
AK = AH (c/m câu a)
=> ΔAIK = ΔAIH (ch-cgv)
=> IAK = IAH (2 góc tương ứng)
=> AI là phân giác BAC
![](https://rs.olm.vn/images/avt/0.png?1311)
sửa lại :
Cho tam giác ABC cân tại A, \(\widehat{A}=30^o\). Vẽ BH ⊥ AC (H ∈ AC), CK ⊥ AB (K ∈ AB).
Gọi I là giao điểm của BH và CK.
Tính số đo góc \(\widehat{BAI}\)
giải:
ta có : \(\Delta ABC\)cân tại A
=> AB=AC(t/c \(\Delta\)cân)
xét \(\Delta BAH\)và\(\Delta CAK\)
\(\widehat{A}-chung\)
AB=AC
\(\widehat{AKC}=\widehat{AHB}=90^o\)
=>\(\Delta BAH\)=\(\Delta CAK\)(ch-gn)
=>\(\widehat{ABH}=\widehat{ACK}\left(2ctu\right)\)
=>\(\widehat{ABI}=\widehat{ACI}\)
xét \(\Delta ABI\)VÀ \(\Delta ACI\)
AB=AC(cmt)
\(\widehat{ABI}=\widehat{ACI}\)(cmt)
AI-cạnh chung
=>\(\Delta ABI\)=\(\Delta ACI\)(cgc)
=>\(\widehat{BAI}=\widehat{CAI}\left(2gtu\right)\)
ta có : \(\widehat{BAI}+\widehat{CAI}=\widehat{A}=30^o\)
mà\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)
=> \(\widehat{BAI}=\widehat{CAI}=15^o\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H K I
a) Sửa đề: AH = AK
Xét t/giác ABH và t/giác ACE
có: AB = AC (gt)
\(\widehat{AHB}=\widehat{AKC}=90^0\)(gt)
\(\widehat{A}\) : chung
=> t/giác ABH = t/giác ACK (Ch - gn)
=> AH = AK (2 cạnh t/ứng)
b) Ta có: \(\widehat{ABI}+\widehat{IBC}=180^0\)(kề bù)
\(\widehat{ACI}+\widehat{ICB}=180^0\)(kề bù)
Mà \(\widehat{ABI}=\widehat{ACI}\)(vì t/giác ABH = t/giác ACK)
=> \(\widehat{IBC}=\widehat{ICB}\) t/giác BIC cân tại I => IB = IC
Xét t/giác ABI và t/giác ACI
có: AB = AC (gt)
BI = IC (gt)
AI : chung
=> t/giác ABI = t/giác ACI (c.c.c)
=> \(\widehat{BAI}=\widehat{CAI}\)(2 góc t/ứng)
=> AI là tia p/giác cảu góc A
b) Gọi O là giao giểm của AI và BC
Xét t/giác ABO và t/giác ACO
có: AB = AC (gt)
AO: chung
\(\widehat{BAO}=\widehat{OAC}\)(cmt)
=> t/giác ABO = t/giác ACO (c.g.c)
=> \(\widehat{AOB}=\widehat{AOC}\)(2 góc t/ứng)
Mà \(\widehat{AOB}+\widehat{AOC}=180^0\)(kề bù)
=> \(\widehat{AOB}=\widehat{AOC}=90^0\)
=> AO \(\perp\)BC hay AO \(\perp\)BC
d) Ta cos: t/giác ABO = t/giác ACO (cmt)
=> BO = OC (2 cạnh t/ứng)
=> O là trung điểm của BC
DO A; I; O thẳng hàng => AI đi qua trung điểm của BC
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì tam giác ABC là tam giác cân , suy ra AB=AC ; góc B =góc C.
Xét tam giác ABH và tam giác AKC, có
AB = AC (cmt)
A là góc chung
K = H ( = 90 độ)
Suy ra tam giác ABH = tam giác AKC(g-c-g)
suy ra BH = CK ( hai cạnh tương ứng )
suy ra góc ABH = góc ACK ( hai góc tương ứng )
Xét tam giác KHB và tam giác KHC , có
CK = BH ( cmt)
Góc ABH = góc ACK ( cmt)
K = H ( = 90 độ )
Suy ra tam giác KHB = tam giác KHC ( g-c-g)
Suy ra KB = HC ( hai góc tương ứng)
Mà AB = BK + AK
AC = AH + CH
Suy ra AK = AH