K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

sửa lại : 

Cho tam giác ABC cân tại A, \(\widehat{A}=30^o\). Vẽ BH ⊥ AC (H ∈ AC), CK ⊥  AB (K ∈ AB).

Gọi I là giao điểm của BH và CK.

Tính số đo góc \(\widehat{BAI}\)

giải:

ta có : \(\Delta ABC\)cân tại A

=> AB=AC(t/c \(\Delta\)cân)

xét \(\Delta BAH\)\(\Delta CAK\)

\(\widehat{A}-chung\)

AB=AC

\(\widehat{AKC}=\widehat{AHB}=90^o\)

=>\(\Delta BAH\)=\(\Delta CAK\)(ch-gn)

=>\(\widehat{ABH}=\widehat{ACK}\left(2ctu\right)\)

=>\(\widehat{ABI}=\widehat{ACI}\)

xét \(\Delta ABI\)VÀ \(\Delta ACI\)

AB=AC(cmt)

\(\widehat{ABI}=\widehat{ACI}\)(cmt)

AI-cạnh chung

=>\(\Delta ABI\)=\(\Delta ACI\)(cgc)

=>\(\widehat{BAI}=\widehat{CAI}\left(2gtu\right)\)

ta có : \(\widehat{BAI}+\widehat{CAI}=\widehat{A}=30^o\)

\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)

=> \(\widehat{BAI}=\widehat{CAI}=15^o\)

24 tháng 3 2021

a)xét 2 tam giác vuông AHB và AKC có:

\(\widehat{A}\) là góc chung

AB=AC (ΔABC cân tại A)

⇒ΔAHB=ΔAKC (cạnh huyền góc nhọn)

⇒BH=CK (2 cạnh tương ứng)

b) xét 2 tam giác vuông AHI và AKI có:

AH=AK (ΔAHB=ΔAKC)

AI là cạnh chung

⇒ ΔAHI=ΔAKI (cạnh huyền cạnh góc vuông)

\(\widehat{HAI}\) =\(\widehat{KAI}\) (2 góc tương ứng)

⇒AI là tia phân giác của\(\widehat{HAK}\) 

                                                                                                   

27 tháng 12 2021
Giúp mình bài này đi mà :
22 tháng 12 2023

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

b: Ta có: ΔAHB=ΔAKC

=>\(\widehat{ABH}=\widehat{ACK}\)

=>\(\widehat{KBI}=\widehat{HCI}\)

Ta có: AK+KB=AB

AH+HC=AC

mà AK=AH và AB=AC

nên KB=HC

Xét ΔIKB vuông tại K và ΔIHC vuông tại H có

KB=HC

\(\widehat{KBI}=\widehat{HCI}\)

Do đó: ΔIKB=ΔIHC

c: ta có: ΔIKB=ΔIHC

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

d: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: IB=IC

=>I nằm trên đường trung trực của BC(2)

ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,I,M thẳng hàng

25 tháng 4 2018

a) Xét tam giác BCH và tam giác CBK có 

     góc KBC = góc HCB ( vì tam giác ABC cân )

 BC : cạnh chung

góc BKC = CHB = 90 độ (GT )

Từ 3 điều trên => Tam giác BCH = tam giác CBK (cạnh huyền - góc nhọn )

b) Vì tam giác BCH = tam giác CBK ( chứng minh ở câu a )

=> BH = CK ( cặp cạnh tương ứng )

c) Vì tam giác BCH = tam giác CBK ( câu a )

=> CH = BK ( 2 cạnh tương ứng )

  Xét tam giác KIB và tam giác HIC có :

Góc KIB = góc HIC ( 2 góc đối đỉnh )             (1)

BK = CH ( chứng minh trên )                            (2)

góc IKB = góc IHC = 90 độ (GT )                       (3)

Từ (1) (2) và(3) => tam giác KIB = tam giác HIC ( g-c-g )

=>  IB = IC ( cặp cạnh tương ứng )

=> tam giác BIC cân tại I 

25 tháng 4 2018

A B C K H I

10 tháng 5 2018

a, Xét \(\Delta\)tam giác vuông AKC và tam giác vuông AHB ta có :
 AB=AC(do tam giácABC cân tại a)
góc A chung
=}tam giácAkc =tam giác AHB (ch_gn)
=}AH=AK(2 cạnh tương ứng)
b,Do AK=AH(cm câu a)=} I thuộc phân giác góc A
=}AI  là phân giác góc A
k hộ mình nhé

10 tháng 5 2018

a) Xét  ΔACK và  ΔABH

Ta có: ∠AKC = ∠AHB = 900 (gt)

AB = AC (ΔABC cân tại A)

∠BAC chung

nên ΔACK =  ΔABH (cạnh huyền-cạnh góc vuông)

suy ra AH = AK

b) Ta có BH⊥AC; CK⊥AB(gt)

mà BH và CK cắt nhau tại I

nên I là trực tâm của ΔABC

suy ra AI là đường cao của ΔABC

mà ΔABC cân tại A 

nên AI la Phân giác của  ∠BAC

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc BAH chung

=>ΔAHB=ΔAKC

=>AH=AK

=>ΔAHK cân tại A

b: Xet ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chug

KC=HB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM vuông góc BC

nen IM là phân giác của góc BIC

c: Xét ΔABC có AK/AB=AH/AC

nên HK//BC