Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bắt chước Geogebra để vẽ hình trên olm:
a) Dễ thấy MN là đường trung bình tam giác GBC nên MN // BC. Do đó tứ giác MNCB là hình thang.(mình nghĩ đề là chứng minh MNCB là hình thang cân chứ? Cho nó phức tạp xíu:D)
b) Từ đề bài ta có ngay DE là đường trung bình tam giác ABC nên DE // BC. Kết hợp MN // BC suy ra MN // DE.
*Chứng minh EM // DM: Mình thấy nó hơi sai sai ở cái đề.
c) Đề có sai hem?
Mik vẽ là B bên trái và C bên phải nha
Ta có BE là đường trung tuyến => B1 = B2
Tương tự C1 = C2
Ta có M , N là trung điểm của GB và GC => MN là đừng trung bình của tam giác GBC
=> MN // BC => MNCB là hình thang ( 1 )
Ta có : B1 = B2 ; C1 = C2
Mà B = C
=> B2 = C2 ( 2 )
Từ ( 1) và ( 2 ) => MNCB là hình thang cân
T nha các bạn
Đề sai rồi bạn ơi:
Nếu tam giác ABC là tam giác bất kì thì trường
hợp hình thang BMNC là cân ko thể xảy ra.
MIK vẽ hình rồi
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(2)
Từ (1) và (2) suy ra DE//MN và DE=MN
b:Xét ΔEBC và ΔDCB có
EB=DC
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{ECB}=\widehat{DBC}\)
hay \(\widehat{GBC}=\widehat{GCB}\)
Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)
nên ΔGBC cân tại G
Suy ra: GB=GC
Suy ra: G nằm trên đường trung trực của BC(3)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(4)
Từ (3) và (4) suy ra AG là đường trung trực của BC
hay AG\(\perp\)BC
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(NM=\dfrac{BC}{2}=3.5\left(cm\right)\)
Bài 1:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra DE//IK và DE=IK
a, Xét tam giác GBC có : D là trung điểm GB
E là trung điểm GC
=> DE là đường trung bình tam giác GBC
=> DE // BC và DE = 1/2 BC (1)
Xét tam giác ABC có : N là trung điểm AB
M là trung điểm AC
=> MN là đường trung bình tam giác ABC
=> MN // BC và MN = 1/2 BC (2)
Từ (1) ; (2) suy ra MN // DE ( đpcm ) và MN = DE
b, Có : MN // DE và MN = DE ( cma )
=> tứ giác MNDE là hình bình hành
=> ND // ME và ND = ME