Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`\color{blue}\text {#DuyNam}`
`a,` Vì Tam giác `ABC` cân `-> AB=AC,`\(\widehat{B}=\widehat{C}\)
Xét Tam giác `ABH` và Tam giác `ACH` có:
\(\widehat{B}=\widehat{C}\)
`AB = AC`
`=>` Tam giác `ABH =` Tam giác `ACH (ch-gn)`
`-> HB=HC (2` cạnh tương ứng `)`
`-> H` là trung điểm của `BC`
`b,` Vì Tam giác `ABH =` Tam giác `ACH (a)`
`->`\(\widehat{BAH}=\widehat{CAH}\) `(2` góc tương ứng `)`
`-> AH` là tia phân giác của \(\widehat{BAC}\)
3:
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
=>ΔABC=ΔABD
b: Xét ΔCBM và ΔDBM có
BM chung
góc CBM=góc DBM
BC=BD
=>ΔCBM=ΔDBM
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
a, Xét tam giác vuông ABH và tam giác vuông ACH có:
AB = AC ( tam giác ABC cân ở A)
AH chung
=> tam giác vuông ABH = tam giác vuông ẠCH (ch - cgv)
=> HC = HB ( cạnh tương ứng )
b, Từ câu a => góc BAH = góc CAH (góc tương ứng)
=> AH là phân giác góc BAC
a) Vì AH \(⊥\)BC \(\Rightarrow\)\(\Delta\)AHB và \(\Delta\)AHC là\(\Delta\)vuông tại H.
Xét \(\Delta\)AHB và \(\Delta\)AHC,có :
AB =AC( \(\Delta\)ABC cân tại A)
\(\widehat{B}=\widehat{C}\)( \(\Delta ABC\)cân tại A)
Vậy \(\Delta\)vuông AHB =\(\Delta\)vuông AHC (Cạnh huyền - góc nhọn )
\(\Rightarrow HB=HC\)( 2 cạnh tương ứng)
b) Vì \(\Delta ABH=\Delta AHC\left(cmt\right)\)
\(\widehat{A}\)1 =\(\widehat{A}\)2 (2 góc tương ứng)
Vậy AH là tia phân giác của \(\widehat{BAC}\)
Bài 2:
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
DO đó; ΔAHB=ΔAHC
b: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
c: BC=10cm nên BH=CH=5cm
=>AC=13cm
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)
a) Xét \(\Delta\)ABH và \(\Delta\)ACH có :
AB = AC(vì \(\Delta\)ABC cân ở A)
\(\widehat{B}=\widehat{C}\)( \(\Delta\)ABC cân ở A)
=> \(\Delta\)ABH = \(\Delta\)ACH(cạnh huyền - góc nhọn)
b) Có \(\Delta\)ABH = \(\Delta\)ACH(cmt)
=> \(\widehat{BAH}=\widehat{CAH}\)
=> AH là tia phân giác của \(\widehat{BAC}\)
Hình vẽ :