Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C E F D M N
a) Xét \(\bigtriangleup BCE \) và \(\bigtriangleup CBD\) có:
\(EC=BD\left(gt\right)\)
\(\widehat{ECB}=\widehat{CBD}\)(2 góc sole trong do BD//CE)
\(BC-chung\)
\(\implies \bigtriangleup BCE=\bigtriangleup CBD(c.g.c)\)
b) Có: \(\bigtriangleup BCE=\bigtriangleup CBD(cmt)\)
\(\implies EB=CD\)(1)
Có: AB=CD(gt)
\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD\Rightarrow EB=CF\)(2)
Từ (1) và (2) \(\implies CD=CF\)
Có: AB=CD(gt)
\(\implies \bigtriangleup ABC\) cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(2 góc ở đáy)
Xét \(\bigtriangleup ECB\) và \(\bigtriangleup FBC\) có:
\(EB=FC(cmt)\)
\(\widehat{EBC}=\widehat{FCB}\left(cmt\right)\)
\(BC-chung\)
\(\implies \bigtriangleup ECB=\bigtriangleup FBC(c.g.c)\)
\(\implies BF=CE\)(2 cạnh tương ứng)
c) Có: \(\bigtriangleup BCE= \bigtriangleup CBD\)
\(\Rightarrow\widehat{EBC}=\widehat{DCB}\)
Gọi FD giao BC tại N
Xét \(\Delta FCN\) và \(\Delta DCN\) có;
\(CF=CD\)(câu b)
\(\widehat{FCN}=\widehat{DCN}\left(cmt\right)\)
\(CN-chung\)
\(\Rightarrow\Delta FCN=\Delta DCN\left(c.g.c\right)\)
\(\Rightarrow\widehat{CNF}=\widehat{CND}\)(2 góc tương ứng)
Mà \(\widehat{CNF}+\widehat{CND}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{CNF}=\widehat{CND}=90^o\Rightarrow FD\perp BC\)
d) Xét \(\Delta EMC\) và \(\Delta DMB\) có:
\(EC=BD\left(gt\right)\)
\(\widehat{ECM}=\widehat{MBD}\)
\(MB=MC\)(vì M-trung điểm BC)
\(\Rightarrow\Delta EMC=\Delta DMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{EMC}=\widehat{DMB}\)(2 góc tương ứng)
Mà \(\widehat{BME}+\widehat{EMC}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{BME}+\widehat{DMB}=180^o\)
\(\Rightarrow EM\equiv MD\)
\(\implies E;M;D\) thẳng hàng
_Học tốt_
d) Ta có EC // BD và EC = BD ( tam giác BCE = tam giác CBD )
=> tứ giác BECD là hình bình hành
=> ED giao BC tại trung điểm mỗi đường
Mà M là trung điểm của BC nên M là trung điểm của ED
=> M, E, D thẳng hàng ( đpcm )

a/ Xét 2 t/g vuông ABD và ACE có:
AB = AC (gt)
\(\widehat{A}:chung\)
=> t/g ABD = t/g ACE (cạnh huyền - góc nhọn)
=> BD = CE (đpcm)
b/ Vì AB = AC(gt) => t/g ABC cân
=> \(\widehat{EBC}=\widehat{DCB}\)
Xét 2 t/g vuông: t/g BDC và t/g CEB có:
BC: Cạnh chung
\(\widehat{DCB}=\widehat{EBC}\)
=> t/g BDC = t/g CEB (cạnh góc vuông - góc nhọn kề)
=> DC = EB
Xét 2 t/g vuông: t/g OEB và t/g ODC có:
EB = DC (cmt)
\(\widehat{EBD}=\widehat{DCE}\) (2 góc tương ứng do t/g ABD = t/g ACE)
=> t/g OEB = t/g ODC (cạnh góc vuông - góc nhọn kề)
=> OE = OD và OB = OC
=> đpcm
c/ Ta có: \(\widehat{AOD}+\widehat{DOI}=180^o\) (kề bù)
=> A, O, I thẳng hàng (đpcm)
Xét t/g AIB và t/g AIC có:
AI: Cạnh chung
AB = AC (gt)
IB = IB (gt)
=> t/g AIB = t/g AIC (c.c.c)
=> \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)
mà \(\widehat{AIB}+\widehat{AIC}=180^o\) (kề bù)
=> \(\widehat{AIB}=\widehat{AIC}=90^o\)
=> \(AI\perp BC\)
mà A,O, I thẳng hàng (cmt)
=> \(AO\perp BC\left(đpcm\right)\)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔAMH có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAMH cân tại A
hay AM=AH(1)
c: Xét ΔANH có
AD là đường cao
AD là đường trung tuyến
Do đó: ΔANH cân tại A
hay AH=AN(2)
Từ (1) và (2) suy ra AM=AN
hay ΔAMN cân tại A

Em tham khảo tại đây nhé.
Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\hat{DAB}\) chung
Do đó: ΔADB=ΔAEC
=>DB=EC
b: ΔADB=ΔAED
=>AD=AE
Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
AE=AD
Do đó: ΔAEH=ΔADH
=>HE=HD
c: Ta có: HE+HC=EC
HD+HB=BD
mà HE=HD và EC=BD
nên HC=HB
=>H nằm trên đường trung trực của BC(1)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,H,M thẳng hàng