\(\perp\)AB ,tại H, MK
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

Xét \(\Delta AMH\)vuông ở H và \(\Delta AMK\)vuông ở K có :

\(\hept{\begin{cases}\widehat{MAH=\widehat{MAK}}\\AM\end{cases}}\)

\(\Rightarrow\)đpcm \(\Rightarrow AH=AK\)

Gọi giao của AM và HK là I

( Rồi xét 2 tam giác AIH và AIK )

8 tháng 5 2019

Xét AIH và AIK để CM : góc I vuông hả ?

14 tháng 1 2018

a ) Do \(AH\perp BC\Rightarrow\)AH là đường cao của \(\Delta ABC\) cân tại A .Hay AH cũng là đường trung tuyến của \(\Delta ABC\) cân tại A .

\(\Rightarrow BH=HC\)

Xét \(\Delta BMH\) và \(\Delta CNH\) có : \(\widehat{BMH}=\widehat{CNH}=90^0\left(gt\right);BH=HC\left(cmt\right);\widehat{B}=\widehat{C}\left(gt\right)\)

\(\Rightarrow\) \(\Delta BMH\) = \(\Delta CNH\) (CH - GN) => BM = CN

Kết hợp với AB = AC => AM = AN hay \(\Delta AMN\) Cân tại A

b)  \(\Delta AMN\) Cân tại A (cmt) \(\Rightarrow\widehat{BAC}=\frac{180^0-\widehat{AMN}}{2}\)(1)

\(\Delta ABC\) Cân tại A (gt)  \(\Rightarrow\widehat{BAC}=\frac{180^0-\widehat{ABC}}{2}\)(2)

Từ (1);(2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}\) Lại ở vị trí trong cùng phía \(\Rightarrow MN\\ \)BC

c) Áp dụng định lý Pytagore và 2 tam giác vuông\(BMH\) Và \(ANH\) ta có :

\(AH^2=AN^2+HN^2\)

\(BH^2=BM^2+MH^2\Rightarrow BM^2=BH^2-MH^2\)

\(\Rightarrow AH^2+BM^2=AN^2+HN^2+BH^2-MH^2=\left(AN^2+BH^2\right)+\left(HN^2-MH^2\right)\)

\(=AN^2+BH^2\)(đpcm)

14 tháng 1 2018

Tam giác(TG) ABC cân tại A có đường cao AH => AH đồng thời là trung tuyến => BH=HC

TG ABC cân => Góc ABC = góc ACB (2goc đáy)

TG MBH = TG NCH (cạnh huyền-góc nhọn) => MB = NC (2ctu) 

mà AB = AC (vì TG ABC cân) và AM + BM = AB , AN + NC = AC 

=> AM = AN 

=> TG AMN cân

b)  AM = BM (CMT) và AN = NC (CMT) => MN là ddg TB của TG=> MN//BC

5 tháng 3 2020

MỌI NGÙI ƠI GUISP MIK VS , CẦN GẤP 

17 tháng 2 2019

\(MH\perp AB\left(gt\right)\Rightarrow\widehat{MHA}=\widehat{MHB}=90^0\)

\(MK\perp AC\left(gt\right)\Rightarrow\widehat{MKA}=\widehat{MKC}=90^0\)

M là trung điểm của BC (gt) nên MB = MC

AM là tia phân giác của góc A (gt) \(\Rightarrow\widehat{BAM}=\widehat{CAM}\Rightarrow\widehat{HAM}=\widehat{KAM}\)

\(\Delta AHM=\Delta AKM\left(ch-gn\right)\Rightarrow HM=KM\) (2 cạnh tương ứng)

\(\Delta HMB=\Delta KMC\left(ch-cgv\right)\Rightarrow\widehat{B}=\widehat{C}\) ( 2 góc t/ứ)

9 tháng 2 2019

mong các bạn giúp mình nhanh ạ

9 tháng 2 2019

A B C 5 5 8 H D E

Cm: Ta có: AB = AC <=> t/giác ABC là t/giác cân tại A 

                            <=> góc B = góc C

Xét t/giác ABH và t/giác ACH

có góc BHA = góc CHA = 900 (gt)

  AB = AC = 5 cm (gt)

góc B = góc C (cmt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> BH = CH (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: BH = CH = BC/2 = 8/2 = 4 (cm)

Xét t/giác ABH vuông tại H (áp dụng định lí Pi - ta- go)

=> AB2 = AH2 + BH2

=> AH2 = 52 - 4 = 9 = 32

=> AH = 3 (cm)

c) Xét t/giác ADH và t/giác AEH

có góc ADH = góc AEH = 900(gt)

   AH : chung

góc DAH = góc EAH (cmt)

=> t/giác ADH = t/giác AEH (ch - gn)

=> HD = HE (hai cạnh tương ứng)

=> t/giác HDE là t/giác cân tại H